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The non-stationary problem of thermoelasticity for rotating bodies has been solved through
determining the optimal temperature and stress fields in the rolling mills of hot rolling systems,
this determination being an issue of the day. The Eulerian approach was applied, it allowed us
to reduce the number of independent variables and consider these fields as quasistatic ones. The
heavy temperature gradients and stresses bound up with them, as well as the rotating nature of
these fields are typical for the processes taking place in the roll core. To solve the problem of
simulation of these processes, we proposed to use Fourier series, which allowed us to obtain a
solution with a sufficient accuracy for the large number of terms of the series being considered.
The peculiarity of the solution obtained is that the stress maximum locates at an insignificant
depth beneath the roll surface.
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Introduction

Problems of thermoelasticity in rotating
bodies subjected to thermal shocks remain
relevant today, with rational solutions obtained
for different practical applications.

Simulation of hot rolling of sheet metal,
with rotating rolls of the rolling mill operating
under heavy mechanical and thermal stress, is
a vivid example of such an application. The
rolls are affected by a combination of cyclic,
mechanical and thermal stresses; characteristic
failure of the orange peel type, associated with
blister delamination, is observed in the surface
layer of the rolls as a result.

The goal of this study has consisted in
developing a method for effectively solving
thermoelastic problems in rotating bodies
exposed to thermal shocks.

The uncoupled thermoelastic problem is
considered in several stages. The first stage
involves solving a non-stationary boundary
problem of thermal conductivity, generating
a temperature field that depends on both time
and space coordinates. The second stage is
aimed at determining the stress-strain state of
a rotating body. We have taken a mathematical
approach  reducing  partial  differential
equations with three independent variables to
ordinary differential equations, which makes
it possible to obtain a solution in the form of
a single series.

The approach we have proposed is
universally applicable, as evidenced by a
complete solution to the problem of finding
thermal stresses in rotating rolls during hot
rolling of sheet metal. It was observed that
surface fracture of mill rolls in operation
has a lamellar structure and cracks form at
a relatively small depth (1—2 mm) from the
surface rather than on it. The nature of cracks
suggests that one of the key factors causing
them are non-stationary thermal stresses
occurring as a result of sudden changes in
temperature. These effects are explained by
significant temperature gradients induced by
thermal shocks in physics of metals.

The developed approach for analytical
calculation of localized temperature fields is
preferable to numerical methods, since it does
not involve iterative selection of the size of the
grids, which is unknown in advance.

The given problem is particularly important
for industry, as confirmed by numerous studies
considering both temperature fields as a separate
issue and temperature fields and mechanical
stresses arising during rolling.
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Three main approaches are used in study of
temperature fields:

direct experimental measurement of surface
temperature fields [1];

calculation of temperature fields by the finite
element method (FEM) or by the grid method
taking into account roll rotation or boundary
conditions [2—10];

calculation of temperature fields by the
Fourier method in the form of a sum of a series
with respect to eigenfunctions [11—14].

Anotable group of studies [15—17] developed
the theory of harmonic finite elements. In
this case, a sequence of one-dimensional
FEM problems is solved separately for each
harmonic amplitude in a Fourier series and
the resulting amplitudes are then multiplied
by the corresponding harmonic function
and summed.

Study of mechanical stress fields has only
been carried out by finite element methods
[3, 5, 6, 810, 16—18]. The temperature field
is taken as the load and the plane problem of
elasticity theory is then solved. Practically all
solutions, except those given in [17], yield
the maximum stresses (by the von Mises
criteria) located on the surface of the rolls,
in the area of contact with the rolled metal.
This result is generally recognized as valid, so
in [14], after the temperature was calculated
by the Fourier method, the modulus of
surface kinematic hardening was calculated,
instead of the stresses, using the temperature
potential.

However, the nature of failure in rolls
indicates that the maximum mechanical
stresses are located at small depths within
the roll core. The standard FEM approach is
inadequate for describing this situation. The
same applies to “harmonic” finite elements
[15—17]: it was found that these elements
cannot be used to calculate stresses, since
they yield stresses that are 1.5 times higher
than those obtained by the “standard”
FEM approach.

In this study, we suggest a spatial approach
reducing the non-stationary thermal
conductivity problem to a quasistationary
one, which makes it possible to develop a
mathematical model of thermal conductivity
in a rotating elastic body. The temperature
distribution field can then be found, and
thermal stresses which are particular
solutions to the thermoelastic problem are
obtained using the thermoelastic potential.
The boundary conditions are to be satisfied
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via the Airy stress function using the example
of trivial loading conditions.

Determining the temperature field
in the rolls

Fig. 1 shows the heating and cooling patterns
of the mill roll. The roll contacts a hot slab in
a narrow contact sector, and then undergoes a
complex cooling cycle in different media. In
our case, we consider alternate cooling with
water and air; other possible schemes involve
cooling with a water-vapor mixture, with only
water, or only air. The sectors indicate areas
with different types of cooling.

Assuming that the temperature field does
not depend on the axial coordinate, the non-
stationary thermal conductivity equation has
the form

AMAT —yT=0, (1)

where 7T is the temperature; A and y are the
thermal conductivity and heat capacity of the
roll material, respectively; A is the two-dimen-
sional Laplace operator; the dot indicates the
material derivative with respect to time.

We have used the spatial (Eulerian) ap-
proach, reducing the number of independent
variables. Provided that the roll rotates at a
constant angular velocity o, the expression for
the material derivative of the temperature field
is simplified:

. oTr oT dr

I (r,p,t)=—+——-+

(o) =2 * 5 ,
LoTdo_ or @

0_—,
op dt o

—

where r and ¢ are the radius and the angle in
the polar coordinate system.
Since the problem is stationary,

o _, dr_,

=0V, = @:0\)
ot dt

dt

>

As a result, we obtain the equation of

stationary thermal conductivity with two
independent variables:
o°’T 10T
M —+——+
or- r o
(3)

L o°’T N
r* 0p° ! oo
The surface temperature of the roll in the
narrow zone of direct contact between the roll
and the sheet, where 0 < ¢ < ¢, (see Fig. 1) is
taken equal to 7, = 600 °C as the average be-
tween the temperature of the hot sheet and the
temperature of the roll. A boundary condition
of the third kind is imposed for the rest of the
zone (¢, < ¢ < 2n):
r=R,p,<@<2m,

oT
W B(T =T ) =0,
or +B( m)

0.

where R is the radius of the roll; 7=T (o) is the
temperature of the air/water mixture cooling
the surface of the roll.

These two conditions can be written as a
single boundary condition of the third kind:

r:R,na—T+T—7;:0, (4)
or

Fig. 1. Rolling pattern (only upper roll is shown)
and pattern for cooling roll with water (/) and air (2);
the black sector corresponds to the contact area
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where

T, 0<op<q,
T =T =
e E((p) {Tm ((P),(po <(P£27C,

A { 0, 0<o9<q, )

1’] = — =
B In(e), @,<o<2m
where the parameters Mo), P(9), T, (9) are
piecewise constant functions of the angle ¢.
To solve boundary problem (3)—(5), we

apply the method of integral transforms:
27

— J. T(r,p)e " dop = ( )

and then seek a solution in the form of a
bilateral series:

T(rg)= 3 T.(re™. (6)

n=—N
After integral transformation, Eq. (3) takes
the form
d’T, 1dT 2
e e e T )
dr r dr r A

The solution of Eq. (7) for n # 0 is expressed in
terms of Bessel functions J and Y :

T (r)=4,J, ( %"”r} +
(3)

+B Y, ey |
A

Since Y (0)=w, B=0 due to limited
temperature in the center of the roll. Then,
T, (r) =A4,J, Y, =
A
)

=A4J (—%aﬁ&],

where a = ‘/%R and a dimensionless radius

&=r/R, 0 <&<1 is introduced.
Let us consider the case n = 0 separately. In
this case, Eq. (7) has the form
d’T, 1dT,
+ J—

ld(dT) 0
or’ r@r rdr\ or '

Then, T)=CIn r+A, and it follows that C = 0,
i.e., T,)= const, from the boundedness condition
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for r= 0.
Now let us carry out integral transformation
of boundary condition (4)

—f[ _+T_

(p ]e "dp=0.

Representing n(¢) in the form of a Fourier
series, we introduce the following notations:

(10)

k=0
n =iTn(q>) “de, (11)
k 2m
T =L2RT((p)e‘i"‘Pd(p.
n 27_c e

0

Let us now separately calculate the first
term in Eq. (10):

2n

1 —m(p _
-+ ! n(e do=
2n
=sz“n I io D9 =
2ni5 or

k

il

k=0
k

z (")=;an’_k~

Substituting the explicit expression for 7/ and
calculating the derivative of the Bessel function
by the rule

5 (2)=0,.(2)-20,()=0.

z

we obtain the following formulation for the
boundary condition:
A, —7,,n=0;

Z(n |7

_(n_k)‘]n—k X,nfk ]+
+A4.J, (%, ))— 1, =0, n=0,

1—i
=——avn-—k.
V2

avn-— Jnkl( nk)
(12)

where y
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Fig. 2. Calculated temperature on surface of roll
as function of angular coordinate (» = R);
calculation parameters are given in the text

As a result, we obtain a system of n equations
with unknown coefficients A . To solve it,
we use the asymptotic behavior of the Bessel
function for large values of the argument:

since the argument of Bessel functions for real
parameters of hot rolling (¢ = 201.6) takes the
values

an ~201.6n, n=12,....

1-i
2

Substituting these values of the argument,
we obtain:

Thus, by solving the system of equations for
the coefficients 4 and substituting them into
Egs. (9) and (6) for T(r,¢), we obtain the tem-
perature distribution in the roll.

Since the coefficients in Eq. (12) contain
exponential factors, the system’s matrix is
ill-conditioned. For this reason, we need to es-

timate the required number of series terms for
each function and use a special algorithm for
the solution.

The nature of Eqs. (12) allows using an al-
gorithm with choice of the pivot element. If the
matrix (n,) is given asymetrically (see expres-
sion (11)), the system matrix becomes triangu-
lar, thus allowing to successively calculate all
the coefficients A . A graph of the temperature
field on the surface of the roll as a function of
the angular coordinate is given below (Fig. 2) as
an example of the calculations for the following
numerical values of the system parameters:

1. T =600 °C, ¢,= 12.68° = 0.2213 rad
(in the contact zone);

2. T =25°C, p= 41700 W/°C m* (for water);
T'=25°C, p= 1500 W/°C m? (for air);
3.4=31 W/ Cm? y=0.673 k]/°C kg (for rolls)

Calculating thermal stresses

To calculate the thermal stress field, we use
the thermoelastic displacement potential @
which is introduced by the equality u = V®.
In the problem of plane deformation, The
thermoelastic potential @ is introduced in the
problem of plane deformation, satisfying the
equation [19]:

Aw =V or

—v (14)
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I
0 0.2 0.4 R m
-100
-200
300
O,, MPa
Fig. 3. Radial distribution of stresses o, in roll core
with ¢ = 0.1 rad
Differentiating both sides of this equation forward differentiation (see [19]):
over time and substituting d7/dt from Eq. (1),
we obtain: 100 1 &*d
_2G{_5_ o
ror r’oe
4 a1V o2 AT, (15) o
dt I-v B c® =-2G
Since the thermoelastic potential provides Y or?
only a partial solution of the thermoelastic o[ 10od (19)
equation, the sign of the operator A can be =2G— 5|7 30
omitted in both sides of Eq. (15). As a result, rLr oo
we have: o 1+v
o, =—2GAD = —2G1—OLT,
-V
d I+v A
—od = a—T. (16) ®_1® —0.
. 1-v B T =

The material derivative of the thermo-
elastic potential in a rotating coordinate sys-
tem is calculated similarly to calculation by
expression (2):

iq) 0P 3¢ _ aE:HV(xxT (17)
dt op Ot op 1-v B

from which we obtain the explicit expression
for the thermoelastic potential:

11+v A
colv B

N (18)
:iH_Va_{ z Tn(,,)leimp}

J.Td(p—

ol-v y|, =y in

The thermal stresses corresponding to the
obtained thermoelastic potential are found by
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Airy function for satisfying
boundary conditions

The given thermal stresses are particular
solutions, and in the general case they do
not satisfy the boundary conditions. Below
we demonstrate how to fulfill trivial force
conditions on the entire surface of the roll. To
adjust the solution so that it satisfies the trivial
boundary conditions, let us introduce the total
stresses:

o U
c, =0, +0,,
_ U
6,=0, +0,,
) U
Tro = Trp + Trg

and so on.
The superscript here indicates the stresses
determined by the Airy function in the plane
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=200

=300

-400

Fig. 4. Radial distribution of stresses o, along angular coordinate ¢
at different depths 2, mm, from roll surface: 0.5 (D), 4 (2), 100 (3)

problem U(r ).
It satisfies the biharmonic equation AAU= 0
and allows to find the stresses:

v _loU 1aU2

=t
ror 6([)

v 8(18U] (20)
‘C 9

The Airy function as a Fourier series has the
following general form (see [19, 20]):

U(e.0)=]ag’+pe" +
+AE+YEINE+ Q& e +

+i(Pnén n Qn§n+2)eimp’

1)

and the coefficients a, B, A, v, x, P, Q, can be
found from the no-stress boundary condition
imposed for the entire surface of the roll:

r=R, o’ +c’ =0, rf;+rfi):0. (22)

Fig. 3 shows the stress distribution along the
roll radius with the angle ¢ = 0.1 rad.

Fig. 4 shows a family of radial stress
distributions along the angular coordinate in
the roll core with different values of its radius.

Rapid growth of stresses at a small depth

from the surface and a smooth decrease towards
the center of the roll can be clearly observed
from Fig. 3. The stress maximum is reached
at a depth /4 of about 4 mm from the surface
(see Fig. 4).

Discussion of results

The distribution of radial stresses in the roll
core that we have obtained differs considerably
from the known results calculated using FEM.
The maximum radial stresses of 350 MPa are
close to the yield strength, with peculiar drops
observed on the curves. The zone of these
stresses lies in the roll core at a depth of 2—4
mm from the surface, which explains well blis-
ter fatigue failure (with blisters 1—4 mm thick
falling off from the roll surface during rolling).

The stress maximum below the surface was
obtained in [9] by simulating a multilayer sys-
tem with different mechanical characteristics
near the roll surface.

Sharp drops on the stress curves were ob-
tained in [17] by taking into account contact
stresses (in addition to thermal ones) in the
rolling zone. Unlike the solution we obtained,
the depth of the stress maximum by the von
Mises criterion was 5% of the radius, which did
not help explain blister delamination. In our
case, this depth was about 3 cm.

Thus, the approach we proposed and used
made it possible to obtain new results for ex-
plaining the experimentally observed blister
failure of the surface by “plunging” cyclic ra-
dial stresses.

The given problem cannot be solved by the
FEM method due to huge radial stress gradi-
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ents evolving in the subsurface layer, which is
about 0.1% of the roll radius. The stress aver-
aging, which automatically occurs inside finite
elements, does not allow to adequately model
these gradients.

Notably, the Bessel functions in the Fouri-
er series with asymptotic representation con-
tain factors that are exponents of the form
exp(A/R), where factors A have a character-
istic value of about 1000. Therefore, there is
no sense in taking more than forty terms of
the Fourier series, since the coefficients of
the Fourier series cannot be determined with
a given double precision even if special nor-
malization is applied. The “fluctuations” of all
functions, seen on the graphs of angular distri-
butions, are related to this circumstance. Nat-
urally, the numerical FEM solution runs into a
similar problem for the case with ill conditions,
as discussed in the above-cited studies.

Conclusion

We have introduced a spatial approach to
the thermoelastic problem in rotating bodies,
which made it possible to reduce the number
of independent variables and obtain exact
solutions for the temperature and stress fields
in the form of a single Fourier series. We have
formulated the equations for thermal stresses
through the thermoelastic potential that we
have then used to calculate thermal stresses
on the surface and in the core of the roll. We
have confirmed that the Airy function could be
tailored to satisfy the boundary conditions on

the roll surface. While this approach allows to
satisfy any boundary conditions set in advance,
we have confined ourselves to the case of trivial
force boundary conditions imposed on the
entire surface of the roll.

As an example of practical application, we
have found a thermal stress field for the mill
rolls during hot rolling of sheet metal.

Based on the investigation we have carried
out, we were able to conclude that thermal
stresses make a significant contribution to the
stress state of mill rolls, and the magnitude
of the temperature component of the stresses
and the cyclic pattern with which they occur
indicate that roll surface failure can evolve
solely due to thermal “shock” induced by
heating and cooling of the roll surface.

The effect of thermal stresses dropping to a
small depth beneath the roll surface has been
obtained for the first time. Importantly, this
effect adequately explains the blister nature of
failure in the roll. The object chosen for study
appeared to be a good model for describing the
processes occurring during operation of rotating
systems subjected to complex thermal loading.

Thus, the proposed approach to solving the
problem may have other important practical
applications for analysis of this type of systems,
in particular, in metallurgy and mechanical
engineering.

The study was carried out with the financial support of
RFBR grants 17-08-00783 and 18-08-00201.
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