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The non-stationary problem of thermoelasticity for rotating bodies has been solved through 
determining the optimal temperature and stress fields in the rolling mills of hot rolling systems, 
this determination being an issue of the day. The Eulerian approach was applied, it allowed us 
to reduce the number of independent variables and consider these fields as quasistatic ones. The 
heavy temperature gradients and stresses bound up with them, as well as the rotating nature of 
these fields are typical for the processes taking place in the roll core. To solve the problem of 
simulation of these processes, we proposed to use Fourier series, which allowed us to obtain a 
solution with a sufficient accuracy for the large number of terms of the series being considered. 
The peculiarity of the solution obtained is that the stress maximum locates at an insignificant 
depth beneath the roll surface. 
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Представлено решение нестационарной задачи термоупругости вращающихся тел 
на примере определения оптимальных температурных полей и полей напряжений в 
прокатных валках систем горячего проката, что представляет собой актуальную проблему. 
Используется пространственное описание, позволяющее уменьшить число независимых 
переменных и рассматривать поля температуры и напряжений как квазистатические. 
Для процессов, происходящих в теле валка, характерны большие градиенты температуры 
и связанные с ними напряжения, а также вращающийся характер полей. Для решения 
задачи моделирования указанных процессов предлагается использовать ряды Фурье, 
которые позволяют при довольно большом количестве рассматриваемых членов ряда 
получать решение с достаточной точностью. Особенностью полученного решения 
является локализация максимальных напряжений на незначительной глубине от 
поверхности валка.
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Introduction

Problems of thermoelasticity in rotating 
bodies subjected to thermal shocks remain 
relevant today, with rational solutions obtained 
for different practical applications. 

Simulation of hot rolling of sheet metal, 
with rotating rolls of the rolling mill operating 
under heavy mechanical and thermal stress, is 
a vivid example of such an application. The 
rolls are affected by a combination of cyclic, 
mechanical and thermal stresses; characteristic 
failure of the orange peel type, associated with 
blister delamination, is observed in the surface 
layer of the rolls as a result. 

The goal of this study has consisted in 
developing a method for effectively solving 
thermoelastic problems in rotating bodies 
exposed to thermal shocks. 

The uncoupled thermoelastic problem is 
considered in several stages. The first stage 
involves solving a non-stationary boundary 
problem of thermal conductivity, generating 
a temperature field that depends on both time 
and space coordinates. The second stage is 
aimed at determining the stress-strain state of 
a rotating body. We have taken a mathematical 
approach reducing partial differential 
equations with three independent variables to 
ordinary differential equations, which makes 
it possible to obtain a solution in the form of 
a single series.

The approach we have proposed is 
universally applicable, as evidenced by a 
complete solution to the problem of finding 
thermal stresses in rotating rolls during hot 
rolling of sheet metal. It was observed that 
surface fracture of mill rolls in operation 
has a lamellar structure and cracks form at 
a relatively small depth (1–2 mm) from the 
surface rather than on it. The nature of cracks 
suggests that one of the key factors causing 
them are non-stationary thermal stresses 
occurring as a result of sudden changes in 
temperature. These effects are explained by 
significant temperature gradients induced by 
thermal shocks in physics of metals. 

The developed approach for analytical 
calculation of localized temperature fields is 
preferable to numerical methods, since it does 
not involve iterative selection of the size of the 
grids, which is unknown in advance. 

The given problem is particularly important 
for industry, as confirmed by numerous studies 
considering both temperature fields as a separate 
issue and temperature fields and mechanical 
stresses arising during rolling.

Three main approaches are used in study of 
temperature fields: 

direct experimental measurement of surface 
temperature fields [1]; 

calculation of temperature fields by the finite 
element method (FEM) or by the grid method 
taking into account roll rotation or boundary 
conditions [2–10];

calculation of temperature fields by the 
Fourier method in the form of a sum of a series 
with respect to eigenfunctions [11–14].

A notable group of studies [15–17] developed 
the theory of harmonic finite elements. In 
this case, a sequence of one-dimensional 
FEM problems is solved separately for each 
harmonic amplitude in a Fourier series and 
the resulting amplitudes are then multiplied 
by the corresponding harmonic function 
and summed. 

Study of mechanical stress fields has only 
been carried out by finite element methods 
[3, 5, 6, 8–10, 16–18]. The temperature field 
is taken as the load and the plane problem of 
elasticity theory is then solved. Practically all 
solutions, except those given in [17], yield 
the maximum stresses (by the von Mises 
criteria) located on the surface of the rolls, 
in the area of contact with the rolled metal. 
This result is generally recognized as valid, so 
in [14], after the temperature was calculated 
by the Fourier method, the modulus of 
surface kinematic hardening was calculated, 
instead of the stresses, using the temperature 
potential. 

However, the nature of failure in rolls 
indicates that the maximum mechanical 
stresses are located at small depths within 
the roll core. The standard FEM approach is 
inadequate for describing this situation. The 
same applies to “harmonic” finite elements 
[15–17]: it was found that these elements 
cannot be used to calculate stresses, since 
they yield stresses that are 1.5 times higher 
than those obtained by the “standard” 
FEM approach. 

In this study, we suggest a spatial approach 
reducing the non-stationary thermal 
conductivity problem to a quasistationary 
one, which makes it possible to develop a 
mathematical model of thermal conductivity 
in a rotating elastic body. The temperature 
distribution field can then be found, and 
thermal stresses which are particular 
solutions to the thermoelastic problem are 
obtained using the thermoelastic potential. 
The boundary conditions are to be satisfied 
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via the Airy stress function using the example 
of trivial loading conditions. 

Determining the temperature field  
in the rolls

Fig. 1 shows the heating and cooling patterns 
of the mill roll. The roll contacts a hot slab in 
a narrow contact sector, and then undergoes a 
complex cooling cycle in different media. In 
our case, we consider alternate cooling with 
water and air; other possible schemes involve 
cooling with a water-vapor mixture, with only 
water, or only air. The sectors indicate areas 
with different types of cooling. 

Assuming that the temperature field does 
not depend on the axial coordinate, the non-
stationary thermal conductivity equation has 
the form

–λ∆ γ 0T T= , (1)

where T is the temperature; λ and γ are the 
thermal conductivity and heat capacity of the 
roll material, respectively; Δ is the two-dimen-
sional Laplace operator; the dot indicates the 
material derivative with respect to time.

We have used the spatial (Eulerian) ap-
proach, reducing the number of independent 
variables. Provided that the roll rotates at a 
constant angular velocity ω, the expression for 
the material derivative of the temperature field 
is simplified:

( ), ,

,

∂ ∂
ϕ = + +

∂ ∂
∂ ϕ ∂

+ = ω
∂ϕ ∂ϕ

T T drT r t
t r dt

T d T
dt



(2)

where r and φ are the radius and the angle in 
the polar coordinate system.

 Since the problem is stationary,

0, 0, .∂ ϕ
= = = ω

∂
T dr d
t dt dt

As a result, we obtain the equation of 
stationary thermal conductivity with two 
independent variables:

2

2

2

2 2

1

1 0.

T T
r r

T T
r

 ∂ ∂
λ + + ∂ ∂ϕ

∂ ∂
+ − γω =∂ϕ ∂ϕ

(3)

The surface temperature of the roll in the 
narrow zone of direct contact between the roll 
and the sheet, where 0 ≤ φ ≤ φ0 (see Fig. 1) is 
taken equal to Tc = 600 °C as the average be-
tween the temperature of the hot sheet and the 
temperature of the roll. A boundary condition 
of the third kind is imposed for the rest of the 
zone (φ0 < φ ≤ 2π):

( )
0, 2 ,

0,

= ϕ < ϕ ≤ π

∂
λ +β − =
∂ m

r R
T T T
r

where R is the radius of the roll; T=Tm(φ) is the 
temperature of the air/water mixture cooling 
the surface of the roll.

 These two conditions can be written as a 
single boundary condition of the third kind: 

, 0,∂
= η + − =

∂ e
Tr R T T
r

(4)

Fig. 1. Rolling pattern (only upper roll is shown)
and pattern for cooling roll with water (1) and air (2);

the black sector corresponds to the contact area
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where

( ) ( )

( )

0

0

0

0

, 0 ,
, 2 ;

0, 0 ,
, 2 ;

c
e e

m

T
T T

T
≤ ϕ ≤ ϕ

= ϕ =  ϕ ϕ < ϕ ≤ π
≤ ϕ ≤ ϕλ

η = = η ϕ ϕ < ϕ ≤ πβ 

(5)

where the parameters λ(φ), β(φ), Tm(φ) are 
piecewise constant functions of the angle φ.

To solve boundary problem (3)–(5), we 
apply the method of integral transforms:

( )
2

0

1 ( , ) ,
2

in
nT r e d T r

π
− ϕϕ ϕ =

π ∫
and then seek a solution in the form of a 
bilateral series:

( ) ( ), .ϕ
=−

ϕ = ∑
N

in
n

n N
T r T r e (6)

After integral transformation, Eq. (3) takes 
the form

2 2

2 2

1 0.
 γω

+ + − − = λ 
n n

n
d T dT n in T
dr r dr r

(7)

The solution of Eq. (7) for n ≠ 0 is expressed in 
terms of Bessel functions Jn and Yn:

( )

.

n n n

n n

inT r A J r

inB Y r

 − ωγ
= + λ 

 − ωγ
+  λ 

(8)

Since Yn(0)=∞, Bn=0 due to limited 
temperature in the center of the roll. Then,

( )

1 ,
2

n n n

n n

inT r A J r

iA J a n

 − ωγ
= =  λ 

− = − ξ 
 

(9)

where a Rωγ
=

λ  
and a dimensionless radius 

ξ=r/R, 0 ≤ ξ ≤ 1 is introduced.
Let us consider the case n = 0 separately. In 

this case, Eq. (7) has the form

2
0 0 0

2
1 1 0.d T dT d dTr

r r r r dr r
 + = = ∂ ∂ ∂ 

Then, T0=C ln r+A0, and it follows that C = 0, 
i.e., T0= const, from the boundedness condition 

for r = 0.
Now let us carry out integral transformation 

of boundary condition (4):
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( )
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∫
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T e d
(10)

Representing η(φ) in the form of a Fourier 
series, we introduce the following notations:
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∫

(11)

Let us now separately calculate the first 
term in Eq. (10):

( )
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∑ ∑
Substituting the explicit expression for Tn and 
calculating the derivative of the Bessel function 
by the rule 

( ) ( ) ( )1 0,n n n
nJ z J z J z
z−

′ = − =

we obtain the following formulation for the 
boundary condition:

( )

( ) ( )
( ))
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− ≠
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(12)

where 
1 .

2n k
i a n k−

−
χ = −
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As a result, we obtain a system of n equations 
with unknown coefficients An. To solve it, 
we use the asymptotic behavior of the Bessel 
function for large values of the argument: 

( ) 2 cos ,
2 4n

nJ z z
z

π π = − − π  

since the argument of Bessel functions for real 
parameters of hot rolling (a = 201.6) takes the 
values

1 201.6 , 1,2,... .
2
i a n n n−

≈ =

Substituting these values of the argument, 
we obtain:

( )

( )
2 422

2 cos
2 4

1 2 2 .
2 1

n

a n na n i

nJ z z
z

e e
i a n

 π π
− − 

 

π π = − − ≈ π  

≈ ⋅ ⋅
π −

(13)

Thus, by solving the system of equations for 
the coefficients An and substituting them into 
Eqs. (9) and (6) for T(r,φ), we obtain the tem-
perature distribution in the roll.

Since the coefficients in Eq. (12) contain 
exponential factors, the system’s matrix is 
ill-conditioned. For this reason, we need to es-

timate the required number of series terms for 
each function and use a special algorithm for 
the solution.

The nature of Eqs. (12) allows using an al-
gorithm with choice of the pivot element. If the 
matrix (ηk) is given asymetrically (see expres-
sion (11)), the system matrix becomes triangu-
lar, thus allowing to successively calculate all 
the coefficients An. A graph of the temperature 
field on the surface of the roll as a function of 
the angular coordinate is given below (Fig. 2) as 
an example of the calculations for the following 
numerical values of the system parameters:

1. Tc = 600 °C, φ0 = 12.68° = 0.2213 rad 
(in the contact zone);

2. Te = 25 °C, β = 41700 W/°C m2 (for water); 

T0= 25 °C, β = 1500 W/°C m2 (for air);

3. λ = 31 W/°C m2, γ = 0.673 kJ/°C kg (for rolls)

Calculating thermal stresses

To calculate the thermal stress field, we use 
the thermoelastic displacement potential Φ 
which is introduced by the equality u = ∇Ф. 
In the problem of plane deformation, The 
thermoelastic potential Ф is introduced in the 
problem of plane deformation, satisfying the 
equation [19]:

1 .
1

T+ ν
∆Φ = α

− ν
(14)

 Fig. 2. Calculated temperature on surface of roll 
as function of angular coordinate (r = R);
calculation parameters are given in the text 
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Differentiating both sides of this equation 
over time and substituting dT/dt from Eq. (1), 
we obtain:

1 .
1

d T
dt

+ ν λ
∆Φ = α ∆

− ν β
(15)

Since the thermoelastic potential provides 
only a partial solution of the thermoelastic 
equation, the sign of the operator Δ can be 
omitted in both sides of Eq. (15). As a result, 
we have:

1 .
1

d T
dt

+ ν λ
Φ = α

− ν β
(16)

The material derivative of the thermo-
elastic potential in a rotating coordinate sys-
tem is calculated similarly to calculation by 
expression (2): 

1 ,
1

∂Φ ∂ϕ ∂Φ + ν λ
Φ = = ω = α

∂ϕ ∂ ∂ϕ −ν β
d T
dt t

(17)

from which we obtain the explicit expression 
for the thermoelastic potential:

( )

1 1
1

1 1 1 .
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N
in

n
n N

Td

T r e
in

ϕ

=−

+ ν λ
Φ = α ϕ =

ω −ν β

 + ν λ
= α  ω −ν γ  

∫

∑
(18)

The thermal stresses corresponding to the 
obtained thermoelastic potential are found by 

forward differentiation (see [19]):

2

2 2

2

2

1 12 ,

2 ,

12 ,

12 2 ,
1
0.

Φ

Φ
ϕ

Φ
ϕ

Φ

Φ Φ
ϕ

 ∂Φ ∂ Φ
σ = − + ∂ ∂ϕ 

∂ Φ
σ = −

∂
 ∂ ∂Φ

τ =  ∂ ∂ϕ 
+ ν

σ = − ∆Φ = − α
−ν

τ = τ =

r

r

z

zr z

G
r r r

G
r

G
r r

G G T

(19)

Airy function for satisfying 
boundary conditions

The given thermal stresses are particular 
solutions, and in the general case they do 
not satisfy the boundary conditions. Below 
we demonstrate how to fulfill trivial force 
conditions on the entire surface of the roll. To 
adjust the solution so that it satisfies the trivial 
boundary conditions, let us introduce the total 
stresses: 

,
,

Φ

Φ
ϕ ϕ ϕ

Φ
ϕ ϕ ϕ

σ = σ + σ

σ = σ + σ

τ = τ + τ

U
r r r

U

U
r r r

and so on.
The superscript here indicates the stresses 

determined by the Airy function in the plane 

Fig. 3. Radial distribution of stresses σr in roll core 
with φ = 0.1 rad
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problem U(r φ).
It satisfies the biharmonic equation ΔΔU = 0 

and allows to find the stresses:

( )
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2 2

2

2

1 1 ,

,

1 ,

,

0.

ϕ

ϕ

ϕ

ϕ

∂ ∂
σ = +

∂ ∂ϕ

∂
σ =

∂
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τ = −  ∂ ∂ϕ 

σ = ν σ +σ

τ = τ =

U
r

U

U
r

U U U
z r

U U
zr z

U U
r r r

U
r

U
r r

(20)

The Airy function as a Fourier series has the 
following general form (see [19, 20]):

( )
]

( )

3 1

2

2

,

ln

,

−

ϕ

∞
+ ϕ

=

ξ ϕ = αξ +βξ +
+λξ + γξ ξ + χϕξ +

+ ξ + ξ∑

i

n n in
n n

n

U

e

P Q e

(21)

and the coefficients α, β, λ, γ, χ, Pn, Qn can be 
found from the no-stress boundary condition 
imposed for the entire surface of the roll:

, 0 , 0.Φ Φ
ϕ ϕ= σ + σ = τ + τ =U U

r r r rr R (22)

Fig. 3 shows the stress distribution along the 
roll radius with the angle φ = 0.1 rad. 

Fig. 4 shows a family of radial stress 
distributions along the angular coordinate in 
the roll core with different values of its radius. 

Rapid growth of stresses at a small depth 

from the surface and a smooth decrease towards 
the center of the roll can be clearly observed 
from Fig. 3. The stress maximum is reached 
at a depth h of about 4 mm from the surface 
(see Fig. 4).

Discussion of results

The distribution of radial stresses in the roll 
core that we have obtained differs considerably 
from the known results calculated using FEM. 
The maximum radial stresses of 350 MPa are 
close to the yield strength, with peculiar drops 
observed on the curves. The zone of these 
stresses lies in the roll core at a depth of 2–4 
mm from the surface, which explains well blis-
ter fatigue failure (with blisters 1–4 mm thick 
falling off from the roll surface during rolling). 

The stress maximum below the surface was 
obtained in [9] by simulating a multilayer sys-
tem with different mechanical characteristics 
near the roll surface. 

Sharp drops on the stress curves were ob-
tained in [17] by taking into account contact 
stresses (in addition to thermal ones) in the 
rolling zone. Unlike the solution we obtained, 
the depth of the stress maximum by the von 
Mises criterion was 5% of the radius, which did 
not help explain blister delamination. In our 
case, this depth was about 3 cm. 

Thus, the approach we proposed and used 
made it possible to obtain new results for ex-
plaining the experimentally observed blister 
failure of the surface by “plunging” cyclic ra-
dial stresses. 

The given problem cannot be solved by the 
FEM method due to huge radial stress gradi-

Fig. 4. Radial distribution of stresses σr along angular coordinate φ 
at different depths h, mm, from roll surface: 0.5 (1), 4 (2), 100 (3)
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ents evolving in the subsurface layer, which is 
about 0.1% of the roll radius. The stress aver-
aging, which automatically occurs inside finite 
elements, does not allow to adequately model 
these gradients. 

Notably, the Bessel functions in the Fouri-
er series with asymptotic representation con-
tain factors that are exponents of the form 
exp(λr/R), where factors λ have a character-
istic value of about 1000. Therefore, there is 
no sense in taking more than forty terms of 
the Fourier series, since the coefficients of 
the Fourier series cannot be determined with 
a given double precision even if special nor-
malization is applied. The “fluctuations” of all 
functions, seen on the graphs of angular distri-
butions, are related to this circumstance. Nat-
urally, the numerical FEM solution runs into a 
similar problem for the case with ill conditions, 
as discussed in the above-cited studies. 

Conclusion

We have introduced a spatial approach to 
the thermoelastic problem in rotating bodies, 
which made it possible to reduce the number 
of independent variables and obtain exact 
solutions for the temperature and stress fields 
in the form of a single Fourier series. We have 
formulated the equations for thermal stresses 
through the thermoelastic potential that we 
have then used to calculate thermal stresses 
on the surface and in the core of the roll. We 
have confirmed that the Airy function could be 
tailored to satisfy the boundary conditions on 

the roll surface. While this approach allows to 
satisfy any boundary conditions set in advance, 
we have confined ourselves to the case of trivial 
force boundary conditions imposed on the 
entire surface of the roll. 

As an example of practical application, we 
have found a thermal stress field for the mill 
rolls during hot rolling of sheet metal. 

Based on the investigation we have carried 
out, we were able to conclude that thermal 
stresses make a significant contribution to the 
stress state of mill rolls, and the magnitude 
of the temperature component of the stresses 
and the cyclic pattern with which they occur 
indicate that roll surface failure can evolve 
solely due to thermal “shock” induced by 
heating and cooling of the roll surface. 

The effect of thermal stresses dropping to a 
small depth beneath the roll surface has been 
obtained for the first time. Importantly, this 
effect adequately explains the blister nature of 
failure in the roll. The object chosen for study 
appeared to be a good model for describing the 
processes occurring during operation of rotating 
systems subjected to complex thermal loading.

Thus, the proposed approach to solving the 
problem may have other important practical 
applications for analysis of this type of systems, 
in particular, in metallurgy and mechanical 
engineering.

The study was carried out with the financial support of 
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