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Mathematical modeling of pathological changes in the body is the means of 
obtaining information for making decisions about the method of treatment. Numerous 
studies have shown that the exponential model describes the tumor cells growth, and 
the time of antigen doubling determines the aggression of cancer cells growth. The 
present work investigates inaccuracies in determining the antigen doubling time as a 
function of measurement errors. The study showed that the decision on the method of 
treatment could be changed by taking into account errors in the prognosis of patient’s 
condition. For patient’s stratification in groups of high, medium and low risks, various 
threshold values corresponding to the antigen level are proposed. The results are 
presented in the form of a table and graphs.

 Key words: mathematical modeling, pathological changes, antigen, simulation error

Citation: V.I. Antonov, E.A. Blagoveshchenskaya, O.A. Bogomolov, V.V. Garbaruk, J.G. Yakovleva, 
The exponential model of the cell growth: A simulation error, St. Petersburg Polytechnical State University 
Journal. Physics and Mathematics. 11 (3) (2018) 70–76. DOI: 10.18721/JPM.11308

Introduction

Cancer is one of the most common fatal 
diseases. Cancer incidence is on the rise. About 
six million new cases of malignant tumors are 
diagnosed every year. Cancer ranks as the third 
leading cause of death in the world, coming 
after cardiovascular and respiratory diseases.

Mathematical modeling of pathological 
changes in the human body is an important 
tool, providing data for effective decision-
making in selecting treatment methods and 
timing. Either deterministic and stochastic 
models or those using methods of nonlinear 
dynamics are commonly chosen as basic models  
[1 – 11]. Most models rely on experimental 
data, which entails accounting for errors in 
setting the problem’s parameters. This approach 
is necessary because a large number of factors 
affect the course of different diseases.

Prostate cancer is considered the most 
diagnosed cancer in men and the second 
(according to statistical data) cause of death 
from cancer [12]. The level of prostate-specific 

antigen p (PSA) in serum, measured in ng/ml, 
is one of the best-studied markers, widely used 
for early detection of this cancer. The kinetics 
of the marker may reflect the actual growth 
rate of the tumor. 

The goal of this study has been to analyze 
the effect of the errors in measuring PSA in 
serum on the result of determining the antigen’s 
doubling time.  

Exponential model

An increase in the number of tumor cells is 
generally described by an exponential model, 
and the p level linearly depends on the number 
of these cells in many cases [12]. The dou-
bling time td for p (measured in months in this 
model) determines the aggressiveness of cancer 
cell growth. This parameter allows to control 
the tumor’s growth rate, choose the optimal 
therapeutic approach and assess treatment ef-
fectiveness. However, empirical data intrinsi-
cally contain errors; for this reason, decision-
making based on the predictions of an unstable 
model should involve error estimation [13].
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The given element p is proportional to its 
increment ∆р, leading to an exponential model. 
In this case, the equality

dр = kрdt,

holds true, and, consequently,  

.ktp Ce= 

The law of exponential growth is valid at a 
certain stage for cell populations in tissue, in-
cluding tumor cells [1]. The exponential model 
should be used bearing in mind that the solu-
tion of differential equation (2) is Lyapunov-
unstable for k > 0 [14], i.e., small variations in 
the initial conditions correspond to significant 
errors in the final calculations. The exponential 
model is widespread and appears valid to use 
provided that its parameters can be adjusted by 
the observation results or by qualitative study of 
the system’s behavior.

With the known values of р, for example, 
р1 and р2, measured at different times t1 and t2, 
the coefficients of the solution of differential 
equation (1), written as

ln ,p C kt= +

have the form 
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Notably, the coefficient C is a dimension-
less quantity, while the coefficient k is mea-
sured in (months) –1.

The time td, elapsed from the time t2, that it 
takes for р2 to double is predicted by the solu-
tion of the equation

2 22 ;dk tp p e ⋅=

it follows from here that the following equality 
should hold true:
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We are going to assume from now on that 
an absolute measurement error iр∆  (i = 1, 2) 
can be made in the value of p, with   .i iр р∆ ≤ ε ⋅  
Then the value of p is estimated as

(1 ) .i i i i i ip p p q p± ∆ = ± ε = ⋅

Here qi⋅100% is the percentage of relative 
measurement error for рi.  

In finding the р1 and р2 levels with the re-
spective errors q1 and q2, the doubling time td

er 
for p, taking into account errors, and the rela-
tive error dtδ  of doubling time prediction are 
calculated by formulae
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The relative measurement error for p 
typically varies from 2 to 20 % [15]. Errors in 
measuring p lead to large errors in determining 
td. Notably, the projected doubling time is 
calculated without error even with large but 
identical relative errors in determining the 
p levels, which means that it is preferable to 
measure the p level at the same laboratory with 
the same equipment.

The denominator in formulae (4), (5) 
is close to zero for a small time interval  
(t2 – t1)  between measurements of p, which 
significantly increases the error in predicting 
td. To provide the given relative error Q for 
calculating the doubling time, the time interval 
between two measurements of p should satisfy 
the inequality 

2

1
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.
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q
q

t t
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For example, with a 5 % error in determining 
the level of p, the ratio q2/q1  can vary from 
(100 – 5) / (100 + 5)  to (100 + 5)/(100 – 5), 
i.e., from about 0.9 to 1.1, and from 0.82 to 
1.22 with a 10% error.

Calculation results and discussion

The data in Table 1 can be used to esti-
mate, for example, the margin of the possible 
error in predicting td

er with p2/p1  = 1.51 and 
the difference 

2 1( ) 12t t− =  months. Instead of 
td = 20 months, td

er values range from 17 to 27 
months, i.e., include the values below the criti-
cal. This means that more intensive treatment 
should be started at td

er = 27 months taking into 

(1)

(2)

(5)

(6)

(3)
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account the model’s error.
It follows from formulae (4), (5) and Table 

1 that the absolute and relative errors of deter-
mining td increase with smaller values of the p2/
p1 ratio. Small td

er values correspond to a large 
p2/p1ratio, while the error in determining the 
doubling time decreases.

Different threshold values of p were pro-
posed for stratification of patients by groups of 
high, medium and low risks in accordance with 
their PSA td levels [12]. Let us denote the val-
ues corresponding to these risks as рtop and рlow 
for further calculations. Patients with р < рlow 

undergo preventive health screenings. Radical 
treatment is started if р > рtop. The [рlow; рtop] in-
terval is commonly referred to as the gray zone 
[15], as different treatment plans can be chosen 
for the p values lying in this range. Predicting 
whether the given p value falls in the gray or 
critical zone makes it possible to calculate the 
recommended time for the next measurement 
of p. If the model for the variation of p corre-
sponds to the exponential one with parameters 

(3), then the value of p equal to рb is reached at 
time tb, for which one of the following equali-
ties holds true, either
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To calculate the tb prediction taking into 
account the error in measuring p, q1р1 and q2р2 

should be substituted into formula (7) instead 
of р1 and р2:
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Fig. 1,a shows how quickly the p value in 

(7)

Tab l e

Predicted values for the doubling times td
er for the cancer marker p depending  

on the errors q in measuring the marker with different parameters

q2/ q1

td
er, months

p2 = 1,51 ng/ml,
td  = 20 months

p2 = 1,46 ng/ml,
td  = 22 months

p2 = 1,56 ng/ml, 
td  = 19 months

0.90 27 30 25
0.92 25 28 23
0.94 24 26 22
0.96 22 25 21
0.98 21 23 20
1.00 20 22 19
1.02 19 21 18
1.04 18 20 17
1.06 18 19 17
1.08 17 18 16
1.10 17 18 15

No t a t i on s : q1 and q2, %, are the errors of measured values of the markers 
p1 and p2, obtained at times t1 and t2; td is the predicted doubling time without 
measurement errors.

No t e s . 1. td
er should be calculated by formula (5), assuming that the initial value 

of the marker p1 is the same and is 1 ng/ml; the difference t2 – t1 = 12 months
2. The values of td

er = 20 months are highlighted in bold as critical: the growth 
rate of cancer cells is regarded as threatening below these values.
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the gray area is reached and a transition into the 
critical zone is made with a high PSA growth 
rate (td = 6 months, рlow = 4 ng/ml, рtop = 10 
ng/ml and (t2 – t1) = 6 months with р2= 3 ng/
ml). In this case,

2

ln(10 / 3)
6 10, 4.

ln 2bt t− = ⋅ ≈

This means that the next p measurement 
should be scheduled in about 10 months, since 
the level of p is going to fall into the critical 
zone after  12 months. Taking into account the 
error in determining p can change this interval 
by a month. The value of p might fall into the 
gray zone in 2.5 months; this should be kept 
in mind when scheduling the p measurement 
date.

Fig. 1,b shows when the gray zone is 
reached with the same value of р2 and td = 20 
months. In this case, the possibility that the 
lower boundary of the gray zone might be 
reached should be taken into account and the 
next p measurement should be scheduled in 8 
months. This interval can be varied from 7 to 
11 months when accounting for the error in 
measuring p.

Measuring p at a third time t3 allows to 
adjust the values of coefficients (3) provided 
that the exponential model agrees with the ex-
perimental data obtained. The adequacy of the 
model can be tested in several ways.

If 

3 2 2 1

3 2 2 1

p p p p
t t t t
− −

≈
− −

(or р3 + р1 ≈ 2р2, provided that the measure-
ments were carried out at equal intervals of 
time), then p increases linearly and the ex-
ponential model should be abandoned. This 
means that the increase in p is not caused by 
the growth of the tumor, but by other factors. 
The date for measuring p was selected with re-
spect to the time when the boundary value рb 
might be reached. If the obtained value of р3 
differs little from the predicted one, then the 
exponential model is chosen correctly. Then, 
with constant parameters of the model and no 
error in measuring p, the doubling time is con-
stant, and the results of td calculations should 
be the same for choosing any two measure-
ments taken at different times. The exponen-
tial model is adequate given the approximate 
equality of the value
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t t
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p p
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i.e., with
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t t t t
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(or р3 ⋅ р1 ≈ р2
2, if the measurements were car-

ried out at regular time intervals). 
The coefficients of the exponent that de-

Fig. 1. Growth kinetics for the values of cancer marker p for different values of the td 
parameter, months: 5.61 (1), 6.00 (2), 6.49 (3) (a) and 17 (4), 20 (5) and 27 (6) (b); 
рtop and рlow are the boundaries of the gray zone; р > рtop corresponds to the critical 

zone; р2= 3 ng/ml; (t2 – t1) = month

a) b)
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viates the least from the given three points  
(t1; р1), (t2; р2), (t3; р3)  can be then tailored to 
estimate the values of the residuals from the 
experimental points.

In this case, we have an inconsistent system 
of three equations with two unknowns:

1 1

2 2

3 3

ln ;

ln ;

ln .

C kt p

C kt p

C kt p

+ =
 + =
 + =

The coefficients C and k, approximately 
satisfying all the equations of the system, can 
be found by the least squares method:
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If an exponential model with coefficients 
(9) is adopted, then the adjusted doubling time 
for p is calculated by the formula
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The error of calculating td is found by the 
formula 
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Formulae (10) and (11) coincide with for-

mulae (4) and (5), provided that the measure-
ments were carried at equal time intervals of 
time, i.e., with 3 2 2 1( ) ( ) :t t t t− = −
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The error does not depend on the mean 
measurement error in this case. 

Conclusion

Analysis of the growth kinetics of cancer cells 
[16, 17], established based on an exponential 
model, is a key step in assessing the effect 
of the method chosen for patient treatment. 
Prognosis of the disease outcome in a patient 
should take into account the total errors of 
the model, which, as we have established in 
this study, exceed the error in measuring the 
characteristics of the patient’s condition.

We have obtained the formulae for 
calculating the relative error of the model, and 
found potential methods for reducing the effect 
of this error on the predictive capabilities of the 
exponential model.

We have confirmed that the decision on 
choosing a method for treating a patient may 
change upon taking into account possible errors 
in predicting the patient’s condition.   

We have proposed a method for calculating 
the time interval between patient assessments, 
necessary for adjusting the parameters of the 
model describing the patient’s condition.

Additional data available on the patient’s 
condition allows to assess the adequacy of the 
model by the several methods we have de-
scribed. 

Our findings can have beneficial applica-
tions not only in medicine, since the the ex-
ponential model is effective at some stages of 
growth rate analysis of consumption, capital, 
population, etc. [18]. 

(11)

(9)

(10)

(8)
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