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The Dupuis paradox and mathematical simulation  
of unsteady filtration in a homogeneous closing dike 
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The aim of this study is to determine a flow rate and a shape of a depression curve 
in conditions of filtration through a rectangular closing dike using aperiodic solutions 
of the Boussinesq limit problem. We have established that the formation of this curve 
and the seepage area (the final jump of continuity or interruption of the curve at the 
minimum pressure point) on the border of the downstream and porous medium, in 
the closing dike of finite length, occurs for a finite amount of time proportional to 
the square of the closing dike length. Therefore, in the short closing dike, a cut-out 
point does not have time to fall into the downstream during the time, it takes for 
the depression curve to touch the water level in the upstream. The continuous curve 
without seepage area always reaches the steady state in the semi-infinite closing dike 
for a finite amount of time.
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Introduction

Seepage problems have major importance 
for power engineering and construction, with 
a wide range of applications extending from 
hydraulic engineering and melioration [1 – 6] 
to construction technologies (rapid pumping 
of groundwater from the pit, drainage of 
construction sites) [8 – 12]. Seepage theory 
as a section of fluid mechanics includes two 
branches: hydromechanical and hydraulic. 
These branches  overlap in solving stationary 
problems [4, 6, 7, 13 – 18].

Hydromechanical seepage theory 
encompasses methods for solving mixed limit 
problems of theory of analytic functions in 
regions with free boundaries [1]. An important 
result of hydromechanical theory is Devison’s 
conclusion on the interruption of the limiting 
boundary streamline in the location (the cut-
out point) where it falls into the tailwater (the 
waters downstream from a hydraulic structure). 
The magnitude of this interruption is called 
the seepage area (δh in Fig. 1). The limiting 
streamline separating the saturated medium 
from the unsaturated one is called the depression 
curve. In other words, the depression curve is a 
line characterizing the level of groundwater in 
the plane of water movement.

Instead of density distributions (vector 

bundles) of the velocity fields, hydraulic seepage 
theory uses trivial (scalar) bundles obtained 
as cross-section-averaged distribution values 
(fluid flow rate and its average velocity instead 
of a velocity layer, flow instead of a streamline 
bundle). This theory is based on Dupuit 
equations for the mean rates of seepage and 
flow in steady-state problems [12]. This theory 
does not have the concepts of a discontinuous 
depression curve and a seepage area, since in 
this case the depression curve is smooth, i.e., 
differentiable at each point.

Implicit techniques are used to calculate 
the height of the seepage area at the boundar-
ies of this region. For this reason, it is natural 
to use the stabilization problem for finding the 
solution of the unsteady Boussinesq problem in 
order to determine the shape of the depression 
curve and the fluid flow rate through the clos-
ing dike.

Depression curve

Dupuit’s theory considers the seeping 
motion of water with an instantaneous mean 
velocity v, which, according to the Dupuit 
formula, is expressed as

v = kJ,

where k is the hydraulic conductivity (k = const  
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in the classical Dupuit theory); J is the hydraulic 
gradient.

The latter is determined as

: – / ,J h s= ∂ ∂

where h = h(t, s) is the depth of the seepage flow 
(t is the time, s is the horizontal coordinate).

The Dupuit paradox consists in the 
following. Let there be a homogeneous closing 
dike of length L carrying the seepage flow from 
h = H on the right to h = he on the left (see 
Fig. 1).

The depression curve (the free surface of 
the seepage flow), or the limiting streamline, 
must touch the horizontal straight line in the 
cross-section s = L, since the face s = L (the 
CD segment in Fig. 1) is the constant pressure 
surface (flow area). However, according to the 
Dupuit formula, the velocity v = 0 and the 
seepage rate q = 0 are obtained in the cross 
section s = L. This paradox is ignored in the 
traditional theory, and the continuity condition 
is used to construct the depression curve. This 
condition is treated as a differential equation 
with respect to h:

( ) 0.
dq d

vh
ds ds

= =

The depression curve u = f(s) has the 
following form:

2 2(1 ),

: / (0 : / ,1).

= + −

= ∈ ≤ =

e e

e e

su u u
L

u h H u h H

The quantity of the seepage flow is expressed 
as

2 2

,
2

eH h
q k

L
−

=

and the derivation of this formula does not 
depend on the type of the depression curve.   

The reasoning is as follows.
The mean seepage rate over the length of 

the closing dike follows the expression

v = k(H – he)/L;

and therefore the flow rate value can be 
obtained by multiplying the mean velocity over 
the length of the closing dike by the mean 
depth hm, calculated as the arithmetic mean of 
the depth limits:

hm = (1/2)(H + he).

We immediately obtain the Dupuit formula 
for flow rate.

Fig. 1. Schematic of the problem statement:
TW, HW are the tailwater and the headwater; s, h are the coordinate axes (h is the seepage flow depth);  

∇ is the elevation; H, h0, hе are the levels of the seepage flow; δh is the seepage area; L is the length  
of the homogeneous closing dike; BC is the depression curve; CD is the flow area; the dashed line indicates  

the headwater level

(1)
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The Dupuit depression curve (see formula 
(1)) intersects the cross-section s = 0 at the 
elevation level h = he (u = ue) and the straight 
line h = H (u = 1) in the cross-section s = L.

In other words, the following conditions are 
fulfilled on the Dupuit parabola (1):

a) no seepage area;
b) at the point s = L, h = H (point C in 

Fig. 1), the Dupuit depression curve does not 
touch the straight line h = H (the dashed line 
in Fig. 1), so this curve cannot be a streamline 
orthogonally intersecting the flow area s = L.

Both of these conditions have to be fulfilled 
for seepage flow to exist. This is precisely what 
the Dupuit paradox is.

Explaining the paradox by the singu-
lar character (singularity) of the point s = L,  
h = H seems untenable.

In this study we propose an alternative 
scheme that explains the instantaneous con-
figuration of the depression curve by the vari-
able character of the instantaneous seepage rate 
over the length of the porous medium.

The explanation is as follows.
Let the seepage flow depth in a semi-en-

closed body s > 0 filled with a porous medium 
be equal to H (h = H) before the initial time  
t = 0. At time t = 0, the fluid level in the 
tailwater s < 0 instantly drops from h = H to  
h = he. The fluid starts to flow out of the porous 

medium, where s > 0, to the tailwater, where  
s < 0. The depression curve is deformed  
(Fig. 2). Its initial length is equal to zero and 
increases with time. At any time t > 0, the left 
end of the depression curve intersects the ver-
tical slope s = 0 on the ordinate h = h0 (the 
h0 value lies in the region he < h0 ≤ H), where  
dh0 /dt < 0, and the right end of this curve 
touches the straight line h = H at the cross-
section s = L > 0, with dL/dt > 0. The left 
end of the depression curve falls down at a rate  
c0 = – dh0/dt, and the right end touches the 
straight line h = H at a velocity cλ: = dL/dt.

In other words, the depression curve acts as 
a flexible (deformable) impermeable “piston” 
that squeezes the fluid out of the porous me-
dium by turning counterclockwise around the 
point s = L, h = H. If the right end of the de-
pression curve reaches the cross-section s = L∞ 
(L∞ is the length of the closing dike) at the time 
t = tλ, further movement of the right end stops, 
the depression curve stabilizes (the semi-infinite 
closing dike is cut off by the abscissa s = L∞). 
Two possible scenarios can happen at this time 
at the left end of the depression curve:

1. The value h0 > he, and a final discontinu-
ity is formed at the left end of the depression 
curve (seepage area);

2. h0 → he + 0, and the seepage area is 
small. 

Fig. 2. The system under consideration, showing the deformation of the depression curve over time:
its right end slides along the straight line h = H from the tailwater (TW) to the highwater (HW),  

and the left slides down (L∞ is the length of the closing dike); C0, Cλ are the velocities of the left and right ends  
of the depression curve
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The first case happens if the cut-out point 
does not have time to descend (fall) to the 
water level downstream. This is possible if the 
time TΛ is small, the closing dike is short and 
the initial level difference H – he is a finite 
value.

For the second case to happen, it is suf-
ficient for the closing dike to be long and the 
initial difference of the levels H – he to be 
small. Sufficient conditions for the existence of 
the seepage area correspond to the results of 
hydromechanical seepage theory.

Indeed, if other conditions are unchanged, 
the height of the seepage area is the greater, 
the shorter the closing dike. If the length of 
the closing dike is invariant, the height of the 
seepage area decreases together with the H – 
he value, and the height of the seepage area 

0: –  eh h∆ =  for an infinitely thin closing dike 
is equal to 0 0– ( – ),H h H h∆ =  i.e., h0 = H.

Thus, we suggest to regard seepage through 
the closing dike as unsteady motion in the po-
rous medium bounded by a moving (descend-
ing and stretching) depression curve.

If the motion of the depression curve stops, 
steady seepage develops.

The goal of the study is to determine the 
flow rate and the instantaneous shape of the de-
pression curve under unsteady seepage through 
a rectangular closing dike.

The solutions of the Boussinesq limit problem

The Boussinesq equation of unsteady seepage 
has to be integrated to calculate the integral 
characteristics of seepage (the flow rate, the 
height of the seepage area, and the shape of the 
depression curve). For plane one-dimensional 
flow, the continuity condition is fulfilled:

( ) 0.
h

vh
t s

∂ ∂
+ =

∂ ∂

It is assumed that the Dupuit formula 

– /v k h s= ⋅ ∂ ∂

is valid for unsteady motion, and the equality

h hk
t s s

∂ ∂ ∂ =  ∂ ∂ ∂ 

is satisfied in this case.
Eq. (2) is considered in the region  

0 < s < L ≤ L∞, t > 0, and the boundary 
conditions have the form

0
0

(0, ) ( , 0) 0.
s

h
h s H h t h

s =

∂ − = − = = ∂ 

If we start using dimensionless coordinates

0: / , 1,

/ 0, / , 0 ,

: / , / ,

eu h H u u u

kt H s H

L H L H
∞

∞ ∞

= < < <

τ = > σ = < σ < λ ≤ λ

λ = λ =

then we obtain, instead of Eq. (2), the 
equation

,
u u

u
∂ ∂ ∂ =  ∂τ ∂σ ∂σ 

and, instead of boundary conditions (3), 
boundary conditions of the form

0(0, ) 1 ( , 0) ( ) 0.
u

u u u
σ=λ

∂ σ − = τ − τ = = ∂σ 

Boundary problem (2a), (3a) can be 
complicated if we assume that the hydraulic 
conductivity is a function of the pressure head, 
for example,

k = k0∙f(u)/u

with an arbitrary function f(u). 
In this case, Eq. (2a) takes the form

( ) .
u u

f u
∂ ∂ ∂ =  ∂τ ∂σ ∂σ 

It can be proved that boundary problem 
(2b), (3a) is equivalent to the following typical 
Crocco boundary problem:

( )
0

12

2

0

2 ( ) 0, ( ) : , : ,
2

( ) ( : 1), 1 0.

u

u u

d
f u u dz

du

d
u u u

du =

ϕ σ
ϕ + = ϕ = ζ ζ =

τ

ϕ ϕ = < < = ϕ = 
 

∫

D

The solutions of the typical Crocco boundary 
problem are known in terms of weak solutions 
(or weak approximations of solutions). For 
example, let u0 = 0. Then we obtain that

1
2

0

1

0

( ) ( ) ln ( )

1
ln ( ) ,

u

u

u
u F v dv F v dv

v

F v dv
v

ϕ = + ⋅ −

−

∫ ∫

∫

(2a)

(3a)

(2b)

(2)

(3)
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2
101

( , ) ( 2)(1 / ) .
2

u α+−
θ τ σ = α + − σ λ

λ

As a result, the flow rate varies from the 
maximum θ(τ) value in the cross-section σ = 0 
which is expressed as

2
0

0
( 2)(1 )

( ) : ( , 0) ,
2

uα + −
θ τ = θ τ =

λ

to zero in the cross-section σ = λ. 
The mean flow rate θm(τ) over the length 

of the closing dike, due to expression (5b), has 
the form

2
01

( )
2m

u−
θ τ =

λ

and coincides with the value of the Dupuit flow 
rate, if u0 = ue  and .λ = Λ  

Thus, we have established that the mean 
flow rate does not depend on the value of the 
parameter α  and formally coincides with the 
Dupuit flow rate.

The following technique is important 
for further calculations. Let us introduce the 
thickness of the seepage boundary layer as a 
thickness of a porous medium layer adjacent to 
the cross-section 0( 0),σ = ζ =  where a finite 
change in the pressure is localized, namely, 
let δ be the thickness of the seepage boundary 
layer:

.
2

λ
δ =

τ

Therefore, by definition, the thickness of 
the seepage boundary layer is determined as 
follows:

, ( ) 0 1 1u∀ζ > δ ∃ε ζ > ⇒ − ε < < .

Fig. 3 shows the thickness of the seepage 
boundary layer for the case u0 > 0. 

So, according to the definition and using 
Crocco’s equation, we obtain:

0

0

1 1

0 0

: (1 ) (1 ) ( )

1 ( )(1 )
(1 )( ''( )) .

2 ( )

u d u

f u u
u u du du

u

∞

δ = − ζ = − λ τ =

−
= − −ϕ =

ϕ

∫

∫ ∫
It can be proved that the thickness of the 

seepage boundary layer δ < ∞  for any summa-

where

0

( ) : ( )
u

F u f v dv= ∫
is the antiderivative for f(u). 

In particular, if f(u) = u (the classical case, 
the hydraulic conductivity is a constant), then 
it follows from the previous formula that

3( ) 1 / 3 1 ,u uϕ = −

and then the following expression is obtained 
for the instantaneous depression curve:

2

3
: .

2 1

d u
du u

ϕ
ζ = − =

−

Let ( , ) : – / 0c c u= τ σ = ∂ ∂τ ≥  be the 
descent rate of the depression curve and  

0 0( , 0) : – / 0c c du d= τ = τ ≥  the descent (fall-
ing) rate of the left end of this curve (in frac-
tions of the hydraulic conductivity k).

Let us set the descent rate distribution of 
the depression curve along its length in the 
form of a binomial:

0( , ; ) ( )(1 / ) .c c ατ σ λ = τ − σ λ

Instead of Eq. (2a), taking into account 
expression (4a), we obtain the following 
equation:

0(1 / ) ,
d du

u c
d d

α  = − − σ λ σ σ 

whose solution has the form

10( , ) : (1 / ) ,
1

cu
u α+λ∂

θ τ σ = = − σ λ
∂σ α +

where ( , )θ = θ τ σ  is the dimensionless fluid flow 
(in fractions of kH2/L).

The second integration leads to the 
expression

2
2 2 0

0

2

/ 2 / 2
( 1)( 2)

 (1 (1 / ) ).

c
u u

α+

λ
= + ×

α + α +

× − − σ λ

Consequently, the instantaneous depression 
curve (5a) differs from the Dupuit parabola 
and coincides with the Dupuit parabola (1) for  
α = –1 

For the flow rate θ, we obtain, due to the 
solution of (5), the following expression:

(5)

(4)

(4а)

(2c)

(5а)

(6)

(5b)
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ble and bounded function f. Hence, the dimen-
sionless length of the closing dike

2 , (1),a a Oλ = δ τ = τ =

and then

.a ΛΛ = Τ

The constant a is bounded, i.e., a = O(1), 
therefore, due to expression (6), the flow rate 
takes the form

2
0

2 2 2
0 0 0

1
( )

2

1 (1 ) 2
.

22

m
u

a

c c c

a Λ

Λ Λ

τ→Τ

−
θ τ = =

τ

− − τ Τ − Τ
= →

Λτ

If 0 1 / ,c TΛ=  this expression reaches 
maximum in the form

1
( ) ,

2m Λθ Τ =
Λ

which coincides with the Dupuit flow rate.
Therefore, we can draw the following con-

clusions:
the mean instantaneous flow rate m( )θ τ  

over the length of the closing dike does not 
depend on the parameter ,α  i.e., on the instan-
taneous shape of the depression curve;

the limit expression (i.e., with – 0TΛτ → )  
for the mean flow rate over the length of the 
closing dike coincides with the Dupuit rate;

The Dupuit formula for flow rate is ap-
plicable only under conditions of steady-state 
seepage.

The main integral relations

The Dupuit equation (2a) implies an integral 
identity expressing the flow rate balance (the 
entire fluid forced out from the closing dike by 
the descending depression curve flows through 
the cross-section s = 0):

0
0

0

(1 ) ( ) .
1

cd
u d

d

λ
λ

− σ = θ τ =
τ α +∫

Let us approximately suppose, somewhat 
overestimating the λ(τ) value, that

.
0

0

1 ( )
(1 ) ( ).

2
u

u d
∞

− τ
− σ = λ τ∫

Then we obtain a simple equation for 2 :λ
2

0(1 ), ( ) (1 )(2 ) 0,  

2 1,

d
n u n

d
λ

= + α = − α + α >
τ

− < α <

where (0) 0.λ =
The value of the parameter ( )n α  varies 

from zero at 1,α =  –2 to the maximum value 
n = 9/4 at 1 / 2;α = −  the arithmetic mean of 
n(α) is 3/2.

Then solution (8) takes the following form:

Fig. 3. Thickness of the seepage boundary layer λ (the shaded area between the dashed line 
and the depression curve is equal to the area of the rectangle with the sides 1 – u0 and λ); 

u0= h0/H, λ = L/H is the dimensionless length of the closing dike

(6а)

(8)

(7)
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2
0

0

( ) ( ) 2 ( )( ) .n c d
τ 

 λ τ = α τ − ω τ − ω ω
 
 

∫
 

Let ,λ = Λ  then the quantity τ reaches the 
value T .Λτ =  Due to expression (9), the pa-
rameters , TΛΛ  and the velocity 0( )c τ  are re-
lated by the following condition:

2
0

0

( ) 2 ( )( ) ;n c T d
∆Τ

Λ Λ

 
 Λ = α Τ − τ − τ τ
 
 

∫

and if u0 = ue, then T .∆τ =  
Consequently,

0

0

1 ( ) 0.eu c d
∆Τ

− − τ τ =∫
Obviously, с0 ≤ 1; then we obtain the fol-

lowing from formulae (9a), (9b), respectively:

2
2 2

2 2.

2
/ 2 1 / 2 , 2 4 ,

2 1 1 ,
2 2

1 1,e

n
n

n n

u

Λ Λ Λ

Λ

∆

Λ
Λ = Τ − Τ Τ = − −

 Λ Λ Τ = − − =
 
 

Τ = − ≤

and then, due to expression (6a), the limit 
value of the mean flow rate over the length of 

the closing dike takes the form
2
0

2

1 ( )2 4 2
lim .

2 2m
u

n nΛ

Λ

τ→Τ

− ΤΛ
θ = − − ≤ =

Λ ΛΛ

For the final expression, the ordinates of 
the left end of the depression curve are:

2
0( ) 1 / .u nΛΤ = − Λ

Formulae (10) make sense if the inequality

2 9 / 2 2.121nΛ ≤ ≤ =

holds true.
Otherwise, the closing dike is assumed to be 

long, i.e., T ,Λ = ∞  and 0 0.eu u→ +
If 1,Λ   then 

2

1 .
2 eu
nΛ ∆

Λ
Τ = < Τ = −

Therefore, the right end of the depression 
curve in a short closing dike reaches the 
headwater level faster than the cut-out point of 
the depression curve falls to the tailwater level.

Let 2 / (2 ),nΛτ = Τ = Λ  and then the fol-
lowing expression holds true:

2
0

2
0

( ) 1 / (2 ),
( ) : ( ) 1 / (2 ).

Λ

Λ Λ

Τ = − Λ

∆ Τ = Τ − = − − Λe e

u n
u u u n

Fig. 4.  Dependence of the height of the seepage area ∆ on the length of the closing dike 
/L H∞Λ =  with a fixed level of ue 

(10)

(9)

(9а)

(9b)

(6b)
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Finally, we obtain the formula 
2 21 / (2 ) 1 2 / 9 .e eu n u∆ = − − Λ = − − Λ

Let 0,Λ → +  then ∆ = 1 – ue. The graph of 
function ( )∆ = ∆ Λ  is shown in Fig. 4. We as-
sume that ∆ = 0 for the value 1/2(9 / 2) .Λ >

We should note that it is possible to improve 
the estimates. Namely, since solution (9) is 
valid, we have:

2 2(2 / 2).nλ = τ − τ

Let 2 .Λτ = = Τ  Then the length λ  of 
the closing dike reaches its maximum value 

,λ = Λ  while 2 2 9 / 2.nΛ = =  This Λ  estimate 
coincides with the previous one. If we formally 
set 2ΛΤ =  in formula (11), then we obtain that 

2 4 9.nΛ = =
So, the closing dike is considered to be long 

if 
29 / 2 9,< Λ <  i.e., 2,12 3, 00,< Λ <

and the mean value of 2,52.Λ =  These esti-
mates are close to the ones obtained in hydro-
mechanical theory, where with 2.7, ..., 2.8,Λ ≈  
the seepage area disappears for nearly all values 
of ue [12, 16].

Conclusions

The following conclusions can be drawn 

based on determining the flow rate and the 
shape of the depression curve under seepage 
through a rectangular closing dike:

the height of the seepage area ∆ is uniquely 
determined by the length of the closing dike. 
The height of the seepage area in a short clos-
ing dike, when ∆ = 1 – ue, is determined only 
by the upstream water level;

the seepage area stabilizes during the time 
2( ),OΛΤ = Λ  so in a short closing dike this 

time is less than the time TΔ that it takes for 
the cut-out point to fall downstream, i.e., 
T T ;Λ ∆<

the cut-out point in a long closing dike 
succeeds in falling downstream in time T∆  
shorter than the time TΛ  that it takes for the 
right���������������������������������������� end of the depression to touch the top-
water;

the height of the seepage area monotoni-
cally decreases during stabilization from the 
value 1 – ue at the time 0τ =  to the value 

(T ) 0.Λ∆ ≥
The proposed alternative scheme explaining 

the instantaneous configuration of the depression 
curve by the variable nature of unsteady seepage 
flow along the porous medium is fully justified 
and allows to obtain new important results, in 
particular, the seepage area, the instantaneous 
local and mean seepage flow.

(11)
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