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The problem of axial impact of a rigid body on elastic rod is considered. The 
Semi-Analytical Method  (SEM) and Finite Element Method (FEM) are applied to 
handle the problem. The SEM of solving the problem implies the quasi-static Hertz 
theory and numerical integration of obtained differential equations. The number 
of necessary degrees of freedom of the FEM solution is determined and numerical 
simulation is carried out. The time of contact interaction and dependence of the 
contact force on the contact time are calculated. The longitudinal wave propagation in 
the rod is investigated. The obtained results are compared with the data from natural 
experiments. An inverse dependence between impacting mass and the accuracy of 
both methods is discussed. The results of comparison confirm the appropriateness of 
both methods for solving the problem.
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Introduction

Solving problems of dynamics and stability 
of thin rods under longitudinal impact requires 
knowledge of the form and amplitude of the 
force in the contact zone [1 – 3]. This paper 
is dedicated to determining the contact force 
in the axial collision of a rod and an impactor 
using three fundamentally different approaches: 
the semi-analytical method (mathematical 
modeling), the finite element method, and an 
experiment. Comparing the results obtained by 
these approaches is particularly interesting, as 
this allows to assess whether each approach is 
correct and can be used in the future.

Problem statement

An elastic rod with a length l is consid-
ered; one of the rod’s ends is fixed (displace-
ments and rotations are forbidden for all points 

of the cross-section). An impactor of mass m 
approaches the free end of the rod at the ini-
tial time with the velocity V0, causing a contact 
interaction in the system (Fig. 1). The grav-
ity forces of the rod and the impactor are not 
taken into account.

In the general case, the force of elastic 
contact interaction arises as a result of mutual 
vibrations of colliding bodies and can be de-
termined from the analysis of their combined 
dynamic strain.

The goals of the study are to find the time 
of contact interaction between the rod and the 
impactor, to construct the dependence of the 
arising contact force on time, and to experi-
mentally verify the calculations.

Semi-analytical method

Description of the mathematical model. 
The condition for contact between the bodies 
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is the coincidence of the coordinates of their 
contact points [4]:

0 1 2 0,v t y y− α − − =

where α  is the linear convergence of the bodies 
due to contact deformations; y1 and y2 are the 
dynamic displacements of contact points of 
both bodies, caused by the contact force P(t) 
without taking into account local deformations; 
v0 is the initial velocity of the impactor.

As the contact area is small, we can neglect 
its mass. Then we are able to use Hertz’s quasi-
static contact theory, according to which the 
contact force P is related to the quantity α  by 
the dependence [5]:

3/2( ) ,P kα = α

Where k is the coefficient depending on the 
parameters of the contacting bodies. 

In the case of the model under consideration, 
it has the form [6]:
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where E and µ  are Young’s modulus and 
Poisson’s ratio, respectively (assuming that the 
rod and the impactor are made of the same 
material); R is the radius of the spherical profile 
of the impactor.

The displacements y1 and y2 can be 
expressed through the contact force, using the 
reaction of each of the colliding bodies to a 
unit impulse [7]:
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where Y (1), Y (2) are the reactions to the unit 
impulse of the rod and impactor, respectively; 
t is the current time, θ  is the integration vari-
able; the moment of contact of bodies is taken 
as the origin.

Substituting these expressions into the con-
tact condition, we obtain an integral equation 
that determines the contact force:
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Since the integral term of this equation 
depends on the values of the contact force at 
all times θ  preceding the one under consider-
ation, with a sufficiently small integration step 
over the time ,t∆  we can neglect the change in 
the force in the integral sum over the interval

.t t t− ∆ ≤ θ ≤

In view of the above, the expression for 
determining the contact force can be written in 
the following form [8]:
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Thus, using a small step t∆  with the help 

of numerical integration, we calculate the 
dependence of the contact force on time step 
by step. In this case, for the system under 
consideration, the reaction of the rod to a unit 
impulse is as follows [9]:

with 
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0
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t
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Fig. 1. Schematic for the problem statement (general case):
l is the length of the elastic rod; m is the mass of the non-deformable impactor, V0 is the vector 

of its initial velocity
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has one to three maxima depending on the 
parameters.

An example of calculating the contact force 
with three maxima is shown in Fig. 2 (curve 1) 
and was obtained with the initial parameters of 
the system given in Table 1.

The rod and the spherical profile of the 
impactor were assumed to be made of steel 
with the characteristics also given in Table 1.

The results obtained were verified by finite 
element simulation of a system with identical 
parameters (see Table 1).

Finite-element model

Description of the model.  After studying 
the convergence of the finite element method, 
we have selected the model shown in Fig. 3. It 
includes about 300,000 knots and has about 1 
million degrees of freedom. Since this problem 
involves investigating not only the contact 
interaction of the rod with the impactor but 
also the wave processes occurring in the rod 
itself [12], we decided not to condense the 
grid in the contact area. Thus, a uniform 
grid was used in the process of finite-element 
modeling.

The statement of the problem in this model 
is as follows.

The rod is made of linearly elastic material 
(as already noted above for the general model) 

with 2 4l l
t

a a
< <
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and so on, 

where 
E

a =
ρ

 is the speed of sound in the 

material of the rod.
Since this model does not consider the 

wave processes occurring in the impactor, its 
reaction to a unit impulse is determined by the 
following expression [10]:

3
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where m is the impactor mass.
The essence of the semi-analytic method 

consists in numerical integration of the equation 
obtained above for calculating the contact force 
[11].

Results of mathematical modeling. The 
dependence of the contact force on time 
was calculated by the semi-analytic method 
for systems with different parameters. It was 
obtained from these calculations that the 
contact force is a smooth time function which 

Fig. 2. Dependence of the contact force on time, obtained by the semi-analytic method 
(curve 1) and the finite element method (curve 2); the values of the initial parameters are 

given in Table 1
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whose parameters are given in Table 1.  
One of the rod’s ends is fixed, that is, both 
displacements and rotations are forbidden for 
all nodes. The opposite end of the rod is free 
(general model). In this problem, we assumed 
that gravity was absent, therefore, there is no 
curvature of the rod at the initial time and the 
rod is stationary. Unlike the rod, the impactor 
consists of two materials. Its front part is made 
of the same material as the rod (it is elastic), 
and the material of the rear part is perfectly 
rigid. This composition of the impactor was 
chosen for two reasons. Firstly, the materials in 
the contact area have to be identical to correctly 
compare the results with those obtained by the 
semi-analytical method [5]. Secondly, this 

construction minimizes the influence of wave 
processes in the impactor on the model used 
[3]. Wave processes cannot occur in a perfectly 
rigid body, which allows to study only the wave 
processes that evolve directly in the elastic 
rod.

Displacement of the nodes of the perfectly 
rigid part of the impactor is only allowed along 
the axis of the rod, and all other displacements 
and rotations are forbidden. All the nodes of 
the impactor have a velocity directed along the 
axis to the free end of the rod at the initial 
time.

As already noted above, one of the goals of 
the study was to determine the dependence of 
the contact force on the impact time.

Tab l e  1

Initial design and experimental parameters of the system

System element, 
material

Parameter Notation Unit
Value

Model Experiment

Rod
Length l m 0.500 0.301

Cross-section area S m2 5.0∙10–5 3.14∙10–6

Impactor

Mass M kg 0.5 0.13 – 8.46

Spherical profile 
radius

R m 0.01 1.58 – 6.36

Initial velocity V0 m/s 1.0 0.3225

Steel

Young’s modulus E N/m2 2.1∙1011 7.342∙1010

Poisson’s coefficient μ – 0.30 0.34

Density ρ kg/m3 7800.0 2696.6

No t e : the initial calculated parameters for both models given in the Table are the ones deemed to be the 
most convenient by the results of the calculation 

Fig. 3. Schematic of the finite-element model 
(an enlarged area of the contact between the rod and the impactor is additionally shown)
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Results of finite-element modeling. This 
problem was modeled by the finite-element 
method with different parameters of both the 
rod and the impactor. The most noteworthy 
results were obtained for the initial parameters 
identical to those for a semi-analytical modeling 
method (see Table 1).

The obtained dependence of the contact 
force on time is shown in Fig. 2 (curve 2).

Depending on the input parameters, the 
number of maxima of the time function of the 
contact force can vary from one to three. It can 
be seen from the obtained results that in this 
case the graph has three local maxima.

Analysis of different results obtained during 
the simulation with different initial data indi-
cates that the dependence of the contact force 
on the time under impact is a rather complex 
function that cannot be represented as simple 
functions such as, for example, the Heaviside 
function. In particular, analysis of dynamic loss 
of stability of a rod should include the possible 
forms of the function of the force applied to 
the end of the rod.

One of the advantages of the finite-element 
method over the semi-analytic method is that 
it is possible to determine the set of parameters 
at any time (for example, the values of dis-
placements, deformations, stresses, etc.). This 
option makes it possible to focus closer on the 
wave processes evolving in the rod under im-
pact, which ultimately determine the form of 

the contact force. In particular, Fig. 4 shows 
the time dependence of the longitudinal dis-
placement of the points of the cross-section 
located half the rod length away from the front 
end of the rod.

It can be seen that a superposition of waves 
propagating in the rod occurs. The method also 
makes it possible to compare the behavior of 
different points of the rod with the results of 
natural experiments.

Comparison of the results obtained  
by two methods

Since these methods are based on different 
concepts and assumptions, it is particularly 
interesting to carry out comparative analysis 
of the simulation results. Fig. 2 shows such a 
comparison for the time dependences of the 
contact forces obtained by the semi-analytical 
and finite-element methods.

Comparing the obtained graphs, we can see 
the perfect qualitative agreement of their forms. 
Quantitative comparison of the calculated results 
reveals that the values of the contact time differ 
by 11 %, and the values of the local extrema of 
the functions by 9 %. Based on the simulation 
data, we can conclude that the results obtained 
by both methods are in good agreement, and 
that the contact force and contact time were 
determined correctly.

If we compare the obtained dependences 
in more detail, we can notice small oscillations 

Fig. 4. Time dependence of the longitudinal displacement of the cross-section 
of the rod; the cross section is located half the rod length away from the front 

end of the rod (the result was obtained by finite element modeling)
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on the curve obtained by the finite-element 
method, absent from the curve obtained by the 
semi-analytic method. These oscillations can 
be attributed to the influence of edge effects 
which the semi-analytic method does not take 
into account.

Comparison of the results of the natural 
experiment with the data of the two calculation 

methods

Natural experiments served to verify the 
semi-analytical and finite-element methods.

The natural experiment conducted at the 
National Taiwan University involved a cylinder 
with a radius of 10.0 mm and a length of  
30.1 mm, made of a material whose parameters 
are given in Table 1.

One was the ends of the cylinder was fixed, 
and a steel impactor approached the second 
free end at the initial moment time at a speed 
of 0.3225 m/s (the impactor was ball-shaped). 
A piezoelectric film 28 μm in thickness and 
7 × 3 mm in size, serving as a piezoelectric 
sensor, was attached to the free end of the 
rod. The principle of measuring the time of 
contact between the cylinder and the impactor 
was based on the piezoelectric effect; the time 
was measured depending on the mass of the 
impactor (Table 2).

A comparison of the results of finite-element 
simulation and semi-analytical calculation with 
the results of natural experiments is also given 
in Table 2.

It can be seen from the results given that the 
greatest error is observed for the finite-element 
method at intermediate values of the impactor 
mass. The error is minimal for the smallest and 
the largest of the selected masses.

A decrease in the error is observed for the 
semi-analytic method with increasing mass of 
the impactor. Thus, the minimal values of the 
impactor mass yield the greatest discrepancy 
between the results of the semi-analytic 
method and the results obtained in the natural 
experiment and by finite-element modeling. 
However, this discrepancy decreases with an 
increase in the mass of the impactor.

Conclusions

In this paper, we have used two fundamentally 
different methods (finite-element and semi-
analytic) to study the dynamic process of 
an impact on a perfectly elastic rod in the 
longitudinal direction. In particular, the contact 
force and the interaction time have been 
determined. The wave processes occurring in 
the rod upon impact have also been studied.

The obtained results were in agreement, and 
it seemed logical to conduct a natural experi-
ment to verify both methods. In addition, the 
approximation of the graphs makes it possible 
to use such functions to solve related problems. 
In particular, using approximated functions in 
studies on dynamic loss of rod stability can al-
low to correctly compare simulation with ex-
perimental results, since impact interaction is 

Tab l e  2

Comparison of the experimental results with the data obtained by the two calculation methods

Value of the impactor 
parameter

Time of the contact interaction, µs Error of the method, %

Diameter, m Mass, g
Natural  

experiment
FEM SEM FEM SEM

3.16 0.13 36.42 31.20 15.32 14.33 57.93
4.75 0.44 46.83 60.75 23.63 29.72 49.54
5.56 0.71 52.26 78.09 27.90 49.42 46.61
6.34 1.04 60.05 81.61 31.71 35.90 47.19
9.51 3.51 84.96 106.21 47.94 25.01 43.57
12.73 8.46 111.10 121.71 64.82 9.54 41.66

Abb r e v i a t i on s : FEM is the finite-element method, SEM is the semi-analytical method (mathematical 
modeling).
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easier to carry out than, for example, step im-
pacts. The latter are extremely popular in vari-
ous model problems but using them in natural 
experiments is not possible yet.
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