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ELECROMAGNETIC WAVE PROPAGATION IN THE THREE-LAYER 
FERRITE-DIELECTRIC-FERRITE STRUCTURE

A.S. Cherepanov 

Peter the Great St. Petersburg Polytechnic University, St. Petersburg, Russian Federation

A problem of wave propagation in a rectangular waveguide containing a three-
layer ferrite-dielectric-ferrite (FDF) structure has been considered in the paper. The 
calculation of a free-space FDF structure usually runs into difficulties. The proposed 
approach has been made it possible to obtain a rigorous solution for the waveguide 
modes for which there is no dependence of electromagnetic fields on a coordinate 
directed along a magnetizing magnetic field. It is the main mode of the FDF structure 
that governs principal properties of a phased array. The obtained relationships 
were shown to describe the modes’ behavior for a free-space FDF waveguide. The 
dependences of the mode propagation constants on the magnetizing magnetic field 
were calculated, electromagnetic field structures of the main and the higher modes 
were found. The optimal structure parameters were determined. They are optimal when 
the controllability of the FDF structure by a constant magnetic field is maximal. 
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Introduction

To date, fabricating phased antenna arrays 
with optimal technical parameters and low cost 
remains an important problem. One possible 
solution is using electrically controlled ferrite-
dielectric-ferrite (FDF) structures to construct 
integrated phased array antennas (IPAAs)  
[1 – 3]. Such antenna arrays have a simple 
design, so they can be manufactured by 
integrated technology methods, which 
considerably reduces the production costs.

An FDF structure is an open waveguide 
operating with multimode operation. Electro-
dynamic analysis of such a structure is compli-
cated because the waveguide is open (unshield-
ed) and contains magnetized ferrite which is a 
non-reciprocal medium. For these reasons, the 
analysis can be performed only approximately.

Finding a strict dispersion equation describ-
ing the properties of at least the basic type of 
waves in such a waveguide is an interesting task 
(it is the properties of the main mode of waves 
in the FDF that determine the most impor-

tant characteristics of the IPAA). This allows 
to gain a better understanding of the physical 
properties of the proposed structure and to op-
timize the antenna.

In this paper, we have considered a three-
layer FDF structure in a closed rectangular 
waveguide. It is known that the distribution of 
electromagnetic waves in such waveguides can 
be described rigorously in a number of cases  
[4, 5]. Below we are going to prove that for a 
high dielectric constant of a dielectric plate in an 
FDF structure, the electromagnetic field outside 
this structure decreases quite rapidly, so that the 
presence of the walls near the waveguide has 
virtually no effect on the main mode.

Problem statement and solution

Let us consider the problem of a rectangular 
waveguide with two ferrite plates and a dielectric 
plate located between them (Fig. 1). The 
external bias magnetic field is directed along 
the z axis (the ferrite plates are magnetized in 
the opposite direction).
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where i is the imaginary unit, μ, μa, μǁ are the 
components of the magnetic permeability ten-
sor [4, 7, 8].

It was established in [4] that if the fields 
do not depend on the z coordinate, only the 
electric field components Ez and the magnetic 
field components Hx- and Hy- remain nonzero 
in a rectangular waveguide. The component Ez 
in the ferrite satisfies the equation
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of wave propagation in the waveguide;
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The components of the magnetic field 
in ferrite can be found using the following 
relations [4]:
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Relations (1) – (3) describe the fields of 
regions II and IV (ferrite plates). Similar rela-
tions are also satisfied for region III (dielec-
tric), and for regions I and V (air).

The only difference is the change in ma-
terial parameters. For example, instead of the 
quantity 2 ,fν  the quantity

2 2 2
d dkν = ε − β

can be written for the dielectric, where dε  is 
the dielectric permittivity of region III. 

In the air-filled regions I and V, 2 2 2
0 kν = − β  

instead of 2 .fν  Similarly, the form of relations 
(2) and (3) changes in these regions.

We can write the solution of Eq. (1) for all 
five regions and apply the boundary conditions 
to them: that the component Ez be equal to 
zero on the side walls and that the tangential 
components of the fields (Ez and Hy) be con-
tinuous at the interface between the regions.

In view of the above, we can write the fields 
for the waveguide regions I – V (see Fig. 1):

I. 0sin( ),zE A x= ν

Fig. 1. Schematic representation of the FDF structure in a rectangular waveguide:  
a is the waveguide width; a1, g1 – g3 are the other geometric parameters; hf, hd are the widths  

of ferrite (II, IV) and dielectric (III) plates, respectively; regions I, V are filled with air;
the external magnetic field is directed along the z axis
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Investigation of the waveguide modes  
of the FDF structure

By solving dispersion equation (4), we 
can obtain the dependence of the propagation 
constant β on the off-diagonal term of the 
tensor µ  (i.e., in fact, on the bias magnetic 
field), as well as on other parameters. Then, if 
we use the data of [4 – 6, 2, 3], we can find 
the structure of the fields for each mode. A 
combination of parameters of the FDF structure 
making it possible to create a workable IPAA 
was proposed and experimentally tested in [6]. 
However, no conclusions could be drawn as 
to whether this combination of parameters 
was optimal. It is possible to carry out such 
an investigation now that we have obtained an 
analytical solution for the main mode of an 
FDF waveguide.

FDF waveguides whose parameters are giv-
en in Table 1 were considered in Ref. [6].

Fig. 2 shows the dependence of the decel-
eration /q k= β  for two modes of the FDF 
waveguide, obtained using the parameters 
from Table 1, on the magnitude of the off-
diagonal term 

aµ  of the tensor µ  (the 
remaining elements of the tensor are assumed 
to be equal to unity). The result corresponds 
to that obtained in [6].

Fig. 3 shows the dependence of the 
controllability of the FDF waveguide 
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The boundary conditions on the side walls 
have already been taken into account here.

As a result, we obtain a homogeneous 
system of linear equations of the eighth order 
with unknown coefficients A, B, C, D, E, F, G, 
I. A non-trivial solution of this system exists 
only if its determinant is equal to zero:
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 Thus, we have obtained a dispersion equation 
that allows to find the propagation constants for 
the modes of the three-layer waveguide, first 
and foremost, for the main mode. The resulting 
equation is rigorous, that is, the accuracy of the 
solution is determined only by the accuracy of 
the procedure for calculating its roots.

The nonzero elements of the matrix Z  are 
given below:
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weight. Therefore, it is expedient to choose the 
plate thickness by the inequality / 0.1.fh a < . 
The value given in [6] seems valid.

Let us now investigate the dependence of 
controllability q∆  on the thickness hd of the 
dielectric. Fig. 4 shows the dependence of q∆  
on hd /a (the other parameters are taken from 
Table 1). It can be seen from the graph that 
there is an optimal thickness value ensuring 
maximum controllability for the dielectric.

The physical meaning of the presence of a 
dielectric plate in an FDF waveguide is that 
it ‘absorbs’ the electromagnetic field so that 
the energy propagates along the waveguide 
inside the plate and in close proximity to it, 
i.e., where the ferrite is located. This is what 
provides good controllability. If the dielectric 
is too thick, the field is concentrated in it, 
and the ferrite has a small magnitude of the 
electromagnetic field, resulting in decreased 
controllability. If the dielectric is too thin, 
it cannot concentrate the field, a lot of 
energy propagates outside the ferrite, and 
controllability decreases as well.

on the thickness /fh a  of ferrite plates. The 
remaining parameters were assumed to be the 
same as before (see Table 1).

It can be seen from Fig. 3 that controllabil-
ity q∆  increases with increasing plate thickness 
but the growth rate drops sharply for thickness 
values / 0.1.fh a >  This is because ferrite 
effectively interacts with the electromagnetic 
wave only in the regions where the polarization 
of the magnetic field is close to circular, while 
the field’s magnitude must be large enough. 
These regions are located near the dielectric 
plate. When thick ferrite plates are used, 
regions with a small magnetic field are involved. 
Therefore, a large increase in controllability is 
not achieved. A large amount of ferrite in the 
FDF waveguide leads to an increase in the 
waveguide’s losses, as well as an increase in its 

Fig. 2. Dependence of the deceleration /q k= β  
of the main (1) and second (2) modes of the FDF 
waveguide on the magnitude of the off-diagonal 

term aµ  of the tensor  ;µ ;
parameters from Table 1 were used

Fig. 3. Dependence of the controllability 

max min( ) /q k∆ = β − β  of the FDF waveguide on 
the normalized thickness /fh a  of ferrite plates;

parameters from Table 1 were used

Tab l e  1

Parameters of the FDF waveguides used in [6]

ka /fh a /dh a fε dε

4.82 0.097 0.042 12 40

No t a t i on s : hf , hd are the widths of the ferrite and dielectric plates, respec-
tively; ,fε  dε  are their dielectric permeabilities; k is the wavenumber of the 
empty space; a is the width of the rectangular waveguide.
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Fig. 5 shows the dependences of the 
normalized component of the electric field 
Ez on the coordinate x/a for the main and 
the second mode. It can be seen that the 
electromagnetic wave of the main mode is 
concentrated mainly in the FDF structure and 
decreases exponentially outside it. Therefore, 
the presence of side walls should not 
significantly affect the propagation constant 
of this mode. This is confirmed by direct 
calculation (the results are given in Table 2).

It can be seen from the data in Table 2 
that deceleration remains constant to three 
decimal places with a change in the waveguide 

width a. It follows then that narrow walls of the 
waveguide can be ‘continued to infinity’, that 
is, removed completely. Wide walls can also 
be removed, since the electric field on them 
does not have a tangential component and the 
boundary conditions are not violated. We obtain 
an open waveguide where we can accurately 
calculate the propagation constant of the main 
mode. The structure of the field is known in the 
region between the wide walls. Outside these 
wide walls, the field can be reconstructed, since 
tangential components of the magnetic field on 
these walls are known.

Thus, the problem of calculating the main 
mode for an open FDF structure has actually 
been solved.

The second mode decreases much slower 
outside the FDF structure, so a larger 
waveguide width a should be taken to calculate 
it accurately.

Fig. 6 shows the graphs of the struc-
ture of magnetic fields for the demagnetized 
state ( 0)aµ =  and for the maximum values 
of magnetization ( 0.5).aµ = ±  The fields are 
normalized by maxyH  with 0.aµ =  It can be 
seen that magnetic fields in ferrite are larger 
if 0.5aµ = −  than if 0.5.aµ =  In addition, the 
polarization of the magnetic field in ferrite 
plates is close to circular for 0.5,aµ = −  while 
for 0.5,aµ =  the field in ferrite, especially in 

Fig. 4. Dependence of controllability q∆ on the 
normalized thickness hd /a of the dielectric; 

parameters from Table 1 were used

Tab l e  2

Set of parameters used and the result of the calculation of deceleration of electromagnetic waves 
propagating in the FDF structure

Parameter Notation Unit Value

Width
ferrite
dielectric

hf cm
0.224

hd 0.096

Off-diagonal term of the tensor  
of magnetic permeability of ferrite 
[7, 8]

aµ – + 0.5

Dielectric constant
ferrite
dielectric

εf –
12

εd 40

Microwave frequency f GHz 10

Waveguide width a cm 2.3; 3.0; 4.0; 5.0

The obtained value of deceleration /q k= β  is 4.774 for all given parameter values
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Fig. 5. Dependences of the normalized component of the electric field Ez on the normalized coordinate x 
for the main (a) and the second (b) mode.

The geometric parameters correspond to those shown in Fig. 1

а) b)

Fig. 6. Results of calculation of the magnetic field distributions (the Hx and Hy components)  
in the FDF structure for its demagnetized state (a) and for the maximum values of magnetization (b, c); 

the magnetic permeability μа = 0 (a); + 0.5 (b); –0.5 (c). 
The fields are normalized by maxyH  with 0aµ =

b) c)

а)
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the right-hand plate, differs greatly from circu-
larly polarized. Therefore, as can be seen from 
the graph in Fig. 2, the slope of the ( )aq µ  de-
pendence is steeper for negative .aµ

Conclusion

The problem of propagation of waves in a 
rectangular waveguide containing a three-layer 
ferrite-dielectric-ferrite structure has been 
solved rigorously in the study. The proposed 
approach allows to investigate the modes of 
electromagnetic oscillations with no dependence 
of the fields on the coordinate directed along 
the bias field. We have established that the 
obtained relations also describe oscillation 

modes for an open FDF waveguide. In an 
open FDF structure, it is the main oscillation 
mode that determines the key properties of the 
integrated phased array antennas, such as the 
scanning angle and the beamwidth. Applying 
the proposed approach to investigation of an 
open FDF waveguide eliminates the need 
for cumbersome numerical methods taking 
considerable computational time. This greatly 
simplifies calculating the performance of 
integral phased antenna arrays.

The results obtained can also be used to 
create ferrite phase shifters [9, 10] based on a 
closed rectangular waveguide with a three-layer 
FDF structure.
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