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The resonance tunneling diode has been widely studied because of its importance 
in the field of nanoelectronic technology and its potential applications in very high 
speed/functionality devices and circuits. Even though much progress has been made 
in this regard, the most popular structure of these diods consists of barriers created 
by heterojunctions only. In this paper, we present numerical simulation results for a 
two-barrier resonance-tunnel structure consisting of the Schottky barrier and a GaAs/
AlGaAs heterojunction. We considered its potential application to the resonance-
tunnel diodes working at room temperature. The configuration of this structure was 
optimized using numerical simulation methods. A current voltage characteristic was 
simulated by the example of the optimized structure, and the influence of the thermal 
current on the obtained dependence was analyzed.
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Introduction

Resonant tunneling diodes based on 
nanoscale semiconductor heterostructures have 
an N-shaped current-voltage characteristic (I–V 
curve) with a negative differential resistance 
region and short response times of the tunneling 
process (lasting on the order of 10–13 s). For 
this reason, these diodes show great potential 
for applications in high-speed terahertz devices 
and digital devices with switching times on 
the order of 10–12 s or less. Iogansen was the 
first to propose using the effect of resonant 
electron tunneling in layered thin-film metal–
insulator structures for creating electronic 
interferometers, thin-film diodes, triodes, etc. 
[1 – 3].

Investigation of resonant tunneling structures

Ref. [4] studied the I–V curve of an 
Al1−xGaxAs/GaAs/Al1–xGaxAs structure with 

different barrier thickness to quantum well 
ratios. Resonant current was observed only at low 
temperatures (77 K and below) for all structures 
under consideration; all effects associated with 
tunneling disappeared at room temperature. 
The authors explained this by thermal smearing 
of the local levels in the quantum well and by a 
low barrier which electrons whose energies are 
relatively high energies for room temperature 
pass through easily.

On the other hand, a decrease in temperature 
to 4.2 K does not lead to the expected ‘sharpened’ 
tunneling, which is probably due to scattering 
by structural fluctuations and impurities; this 
scattering also results in a broadening of the 
local levels.

A current peak caused by the resonant 
tunneling effect is observed on the I–V curve 
at 77 K, while the curve’s simulated shape 
agrees with the experimental one. This feature 
disappears at room temperature.



6

St. Petersburg State Polytechnical University Journal. Physics and Mathematics. 11(1) 2018

Four factors influence the magnitude of 
the tunneling current [5]: the thickness of the 
barrier, the width of the well, the height of the 
barrier and the concentration of impurities in 
the contact region. While the first three factors 
determine the height of the peak and the 
behavior of the dependence of the transparency 
coefficient on the electron energy, the fourth 
one determines the energy distribution of 
these electrons at the input to the two-barrier 
structure.

The I–V curve of a resonant-tunnel diode 
is also affected by its material. For example, 
the height of the imax peak for InAlAs/InGaAs 
structures is almost an order of magnitude higher 
than for AlAs/GaAs, with approximately the 
same imax/imin ratio [6]. Multi-barrier structures 
have also yielded good results. The electron 
energies in such a system containing a sequence 
of monotonically narrowing quantum wells are 
the same at equivalent levels of all wells [7]. This 
is achieved by tailoring the widths of the wells so 
that the value of the potential difference applied 
to the structure is equal to the height difference 
between the ground level of the narrowest 
quantum well and the Fermi level.

A sharp resonance peak is observed on the 
I–V curve of the structure at sufficiently low 
barrier permeability, when level splitting due 
to overlapping of electron wavefunctions in 
adjacent wells is small. This peak is formed by 
electrons whose energy lies in a narrow range 
near the ground state energy of the narrowest 
quantum well.

Simulation procedure

 In this paper, we have investigated a two-
barrier resonant tunneling structure where the 
Schottky barrier, which is natural for metal–

gallium arsenide (GaAs) contact and caused by 
surface states, is necessarily present (Fig. 1). Its 
height for various metals is about 0.8 eV [8].

The second barrier is a GaAs/AlGaAs 
heterojunction, which can have different heights 
(depending on the aluminum fraction). The 
thickness of the AlGaAs layer responsible for 
the heterojunction barrier width is also varied.

We assumed that the carrier density n 
reached 1019 cm-3 for the simulated structure. 
The Schottky barrier with such an impurity 
concentration has the smallest thickness, and 
this concentration is technologically obtained 
with the least number of implantation defects.

Within our model, the region of the Schottky 
barrier is a depleted layer, so the distribution of 
external potential is assumed to be linear, with 
its maximum at the point x = 0, and its zero 
at the metal–semiconductor interface (Fig. 2). 
The external voltage falls between the Schottky 
barrier (this is a metal–GaAs transition, which 
is a collector) and the heavily doped GaAs 
region which serves as the second contact. 
The structure’s emitter is located on the left, 
on the side of the heterojunction barrier, and 
the collector is on the right, the side of the 
Schottky barrier (see Fig. 1).

In practice, it is possible to create resonant 
tunneling diodes with heterojunction barrier 
heights up to 0.4 eV. This limit is due to re-
combination centers emerging in a semicon-
ductor, and, as a consequence, high noise on 
the I–V curve of the structure.

In this study we have analyzed resonant 
tunneling structures with barrier heights from 
0.3 to 0.4 eV. The current in these structures 
was calculated as created by electrons moving 
from the emitter to the collector [5]; as a re-
sult, its density followed the expression

Fig. 1. Schematic of a resonant tunneling structure
GaAs collector metal (Schottky barrier); GaAs/AlGaAs heterojunction (the second barrier);  

E and C are the emitter and the collector, respectively
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where E is the energy; V is the voltage applied 
to the structure; D(E) is the transmission 
coefficient; EF is the energy of the Fermi level; 
T is the temperature;  

kB is the Boltzmann constant; e and m* the 
electron charge and effective mass. 

The EF value is determined from the solution 
of the electroneutrality equation
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where β  is the spin degeneracy factor ( 1 / 2);β =  
Nd is the donor impurity concentration  
(Nd = 1019 cm–3 in the present study, it is taken 
for the GaAs layer adjacent to the Schottky 
barrier); Nc is the effective density of states in 
the conduction band; F1/2 is the Fermi integral 
with the index 1/2; Ed is the energy of the do-
nor level. 

The donor level in gallium arsenide is cre-
ated by silicon with a depth of –6 meV rela-
tive to the bottom of the conduction band. We 
obtained the D(E) dependence by the method 

proposed in [9], by solving the Schrödinger 
equation in the one-electron approximation 
without scattering effects taken into account.

Let the two-barrier structure be located at 
distances from 0 to L; then the wave function 
is taken from the Schrödinger equation:

2

2 *
( ( )) 0,

m
E U x′′ψ + − ψ =



where m* is the effective electron mass (for 
simplicity, it is assumed to be the same in the 
entire region under consideration).

The solution of the equation in the outer 
regions are functions of the following form:

0,x ≤  ;ikx ikxe re−ψ = +

,x L≥  ( ),ik x Lde −ψ =

where r and d are the amplitudes of reflection 
and transmission, respectively; k is the wave 
vector magnitude.

The reflection and transmission coefficients 
follow the expression

2 2
, ,R r D d= =

The boundary conditions are obtained from 
functions (4):

(0) 1 ,rψ = +  ( ) ,L dψ =

(0) (1 ),ik r′ψ = − ( ) .L ikd′ψ =

Let us express the amplitudes r and d 
through functions (0)ψ  and ( );Lψ  the bound-
ary conditions can be then written as

(0) (0) 2 ,ik ik′ψ + ψ =

( ) ( ) 0.L ik L′ψ − ψ =

Fig. 2. The energy diagram of the structure with an external voltage of 0.1 V applied

(1)

(2)

(3)

(4)

(5)

(6)

(7)
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Equation (3) together with conditions (7) 
determine the problem in the inner region at 
distances from 0 to L. Solving this problem 
and finding ( ),xψ  we can find the reflection 
and transmission coefficients in the following 
form:

2 2 2 2
( ) , (0) 1 .D d L R r= = ψ = = ψ −

Let us take the structure’s total length L 
for unity, then the Schrödinger equation takes 
the form

( ( )) 0,U x′′ψ + ε − ψ =

where the energy ε and the potential U(x) are 
counted in units 2 2/ 2 .mL  

Let us divide the section from 0 to L into 
N regions of length a. Then L = Na; if L = 1, 
then а = 1/N. 

For an arbitrary point inside the region, 
equation (9) can be written in a discrete form:

1 1 0,n n n n+ −ψ + ψ + ε ψ =

22 ( ).n na Vε = − + ε −

For the first of boundary conditions (7), let 
us replace the wave function derivative with its 
discrete equivalent

1 1(0) ( ) / 2 .a−′ψ ≈ ψ − ψ

Then the boundary condition and the 
Schrödinger equation for x = 0 have the form

1 1 02 4 ,ika ika−ψ − ψ + ψ =

1 1 0 0 0.−ψ − ψ + ε ψ =

Adding up the two equations of (12) and di-
viding this sum by 2, we obtain the first bound-
ary condition:

0
1 0 2 .

2
ika ika

ε 
ψ + + ψ = 

 

For the second boundary condition (x = 
N), we similarly find:

1 1 2 0,N N Nika+ −ψ − ψ − ψ =

1 1 0,N N N N+ −ψ − ψ + ε ψ =

and from this we obtain this condition in the 
form

1 0.
2
N

N Nika−
ε 

ψ + + ψ = 
 

Thus, the problem consists in solving the 

system of equations (10), (13), and (15).
The tridiagonal system of equations (10) is 

solved by the modified sweep method [10].

Results and discussion

At the first stage of the simulation, the 
resonant tunneling structure was optimized 
based on the transmission coefficient D(E) 
depending on the width and height of the GaAs/
AlGaAs heterojunction barrier; we selected the 
geometric parameters (height and width) of this 
barrier with which the transmission coefficient 
took the greatest value, at least 70 %.

An example of the simulation result is 
shown in Fig. 3. Notice that the barriers in this 
structure are rather wide (up to 11 nm) and the 
width of the peaks on the D(E) dependence 
does not exceed several tens of millielectronvolts 
(specifically, it was varied from 0.01 to 20 meV). 
The D(E) dependences we have obtained did 
not take into account the scattering effects in 
solving the Schrödinger equation in the one-
electron approximation with the help of the 
above-described numerical method.

 The highest transmission coefficients 
were observed in structures with Schottky 
barrier heights of 0.30 – 0.35 eV and widths of  
6 – 9 nm. The transmission coefficient was 
more than 95 % in some of these structures. 
Additionally, resonant tunneling with peaks  
of 10 % or higher was observed for all 
configurations of the heterojunction barrier.

Fig. 4 shows examples of the dependence 
of the maximum value of the transmission 
coefficient on the external voltage with varying 
barrier width (from 6 to 11 nm) and fixed barrier 
height (0.4 eV). As the width of the barrier 
decreased, the height of the peaks increased; 
the form of the dependence changed from 
decreasing at the maximum width to increasing 
(up to the value of the transmission coefficient 
over 90 %).

An examination of the selected models of 
resonant tunneling structures revealed that the 
transmission coefficient value depends more 
on the height of the heterojunction barrier 
than on its width. The transmission coefficient 
values determine the simulated behavior of 
the I–V curve of the resonant tunneling diode  
(see Eq. (1)); however, while analysis of these 
coefficients is important, it does provide a 

(8)

(9)

(10)

(11)

(12)

(13)

(14)

(15)
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complete picture of the optimization. For this 
reason, we also simulated the I–V curves of these 
structures at two temperatures: 100 and 300 K.

Fig. 5 shows the I–V curves of a resonant 
tunneling structure with a barrier height of 
0.3 eV and a thickness of 6 nm; the highest 
and broadest current peak is observed at these 

parameters. The calculated I–V curves were 
obtained at 100 and 300 K.

It can be seen from the dependences that 
the current density peak reaches a value that 
is acceptable for experimental observation (up 
to 108 A/m2) at 300 K. The current density 
for the resonant tunneling structures under 

Fig. 3. Transmission coefficient versus energy with a heterojunction barrier  
width of 6 nm and height of 0.3 eV (the result of simulation)

Fig. 4. Dependences of the maximum transmission coefficient on the external voltage  
with a variation in the heterojunction barrier width, nm: 11 (curve 1), 10 (2), 9 (3), 7 (4), 6 (5); 

barrier width was 0.4 eV
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consideration has two components at nonzero 
temperatures, the thermal and the tunneling 
one. The tunneling current has been discussed 
above, and the thermal current is expressed by 
the following formula:

1/2
B

B

B

exp
2 *

exp 1 .
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k T e

j ne
m k T

eV
k T
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As a result, the current density J is expressed 
by the sum

therm tunnelJ j j= +

where jtunnel is the tunneling current density (1). 
Due to the high Schottky barrier  

(φ = 0.8 eV), the thermal current injected 
through it is extremely small compared to the 
tunneling current. The thermal component at 
room temperature (300 K) is two orders of 
magnitude lower than the tunneling one.

The I–V curves shown in Fig. 5 were 
obtained without taking into account the effects 
of electron scattering. The main contribution 
to the current is made by resonant tunneling 
through the second level (see Fig. 3), for which 
the transmission coefficient peak is much wider 
and higher.

However, electron scattering in doped 
gallium arsenide can significantly affect the 
values of the transmission coefficient and 
current. This effect can be estimated by 
assuming that the transmission coefficient peak 
is described by the Lorentz formula [11]:

(16)

(17)

Fig. 5. I–V curve of a resonant tunneling structure with the heterojunction barrier  
width of 6 nm and the height of 0.3 eV at temperatures of 100 K (a) and 300 K (b)

а)

b)
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where D1 and D2 are the coefficients of 
transmission through the first and the second 
barrier; ∆Et is the total width of the peak; ∆Eb 
is the peak width without taking into account 
the scattering processes, Ep is the position of 
the maximum peak value.

The full width of the peak 

∆Et = ∆Eb + ∆Er,

where ∆E r is the width of the peak caused by 
relaxation processes; /r rE∆ = τ  (τr is the 
momentum relaxation time). 

If we assume that electron mobility in doped 
gallium arsenide is µ  = 0.4 m2/(V·s) at 300 K, 
then rτ  = 1.5·10–13, rE∆  = 4.4 meV.

Thus, the influence of scattering processes 
manifests in a decrease in the height of the 
transmission coefficient peak by 4.4 times and 
in its broadening by 2.1 times. This should lead 
to a significant decrease in the tunneling cur-
rent (current should decrease due to a decrease 
in the height of the resonant peak, but this de-
crease should be partially compensated by its 
broadening).

To estimate the effect of scattering on neg-
ative differential conductivity (NDC), we can 
assume that its maximum value gmax is propor-
tional to the ratio 2 2/ ,b tE E∆ ∆  and then gmax 
will decrease by 4.4 times.

The above estimates prove that the effect of 
scattering in the structure under consideration 
reduces the peak current on the I–V curve by 
several times and expands the NDC region, 
making the current decay slower compared 
with the I–V curve in Fig. 5

However, NDC at normal temperature and 
the simplified technology (compared with a 
two-barrier heterostructure) are still important 
for practical applications, in comparison with a 
two-barrier heterostructure.

Conclusion

The paper presents the results of numerical 
simulation of promising resonant tunneling 
structures. We have established that tunneling 
effects in these structures persist at high 
temperatures up to room temperature, while 
the position and shape of the current density 
peak change with the configuration, i. e., the 
height and width of the GaAs/AlGaAs barrier 
of the resonant tunneling structure.

(18)
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