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 We investigate the space-time evolution of a photoelectron formed as a result of interaction 
of an ultrashort electromagnetic pulse with a hydrogen-like atom in the two-dimensional 
approximation. A characteristic feature of the considered evolution is the presence of singular 
points in the electron probability density, which can be interpreted as centers of quantum 
vortices. Based on numerical simulation of the time-dependent Schrödinger equation, we analyze 
localization, structure and number of quantum vortices in ordinary and momentum space. We 
have also considered the probability flux. We have established that the analyzed values given are 
strongly dependent on the duration of ultrashort electromagnetic pulse. The numerical solution is 
compared with the analytical one obtained in the framework of the Born approximation.
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Проведено численное и аналитическое исследование пространственно-временной эволюции 
квантовой системы, образованной в результате взаимодействия электромагнитного поля с 
водородоподобным атомом в двумерном приближении. Характерной особенностью полученного 
решения является наличие особых точек (квантовых вихрей), анализ которых проведен путем 
введения плотности вероятности и плотности потока вероятности. Образующиеся в процессе 
ионизации вихри могут распространяться на макроскопические расстояния и проявляться в 
виде запрещенных областей в спектре волновых чисел. Для численного моделирования такой 
задачи используется специальное преобразование переменных – метод расширяющегося 
пространства. Проведен численный анализ зависимости количества квантовых вихрей и их 
положений от параметров электромагнитного импульса. Численное решение сравнивается с 
аналитическим, полученным в рамках борновского приближения.
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Introduction

Numerous studies have considered struc-
tures that can be interpreted as vortices in 
quantum systems [1–6]. For example, a vor-
tex structure, generated by a focused laser 
beam in Bose–Einstein condensate, was dis-
covered recently [1]. This structure is similar 
to the Kármán vortex street, well known in 
fluid dynamics [7]. 

There is reason to believe that similar struc-
tures may evolve in simple single-electron 
quantum systems. In particular, vortex-like 
formations were investigated for quantum sys-
tems produced through photoionization of a 
single atom [5] or through atom-ion collision 
[6].  These formations manifest themselves as 
specific regions in space (ordinary or momen-
tum), with their own centers, which are forbid-
den regions for electrons (isolated zeros of a 
single-electron wave function), and probability 
flux revolving around these centers. 

Understanding the nature of vortices and 
developing methods for controlling them is of 
clear interest for fundamental studies, as well 
as for solving applied problems, e.g., in pho-
toelectron spectroscopy. 

In this study, we investigate formation and 
evolution of quantum vortices on the example 
of the well-known problem of ionization of 
a hydrogen-like atom by a laser pulse. The 
existing approximate approaches to solving 
such problem (see, for example, [10, 11]) are 
usually inapplicable to analysis of the evolu-
tion of vortex structures. Thus, the solutions 
obtained using quasi-classical approaches do 
not include vortex structures as they are asso-
ciated with singularities of quantum pressure 
discarded due to small ħ2. 

Nevertheless, this information can be ob-
tained by means of numerical simulation of the 
nonstationary Schrödinger equation [4]. Be-
sides, the hydrodynamic representation based 
on the Madelung equations [8] provides a clear 
interpretation for the solution to the problem 
on evolution of quantum vortices. Another 
benefit of this approach is that it allows to in-
troduce quantum pressure [9] which (as not-
ed above) governs vortex trajectories and can 
serve as an indicator of the evolution of the 
entire quantum system. However, the singular-
ities appearing as probability density tends to 
zero make it problematic to use the Madelung 
equations for simulating evolution of these 
vortex-like structures, whose nature is similar 
to that of potential vortices considered in the 
theory of inviscid flow [7]. 

On the other hand, there are also some 
difficulties in numerically solving the nonsta-
tionary Schrödinger equation because the wave 
function of the photoelectron includes an os-
cillating factor taking the form

2

exp
2
m ri

t
 
 
 

(m and r are the mass and the position of the 
electron, t is the time), leading to divergence 
for large values of r and t.

This issue can be resolved, in particular, 
through removing strongly oscillating phases 
by transformation of variables in expanding 
space and by using time scaling [12, 13]. 
Notably, the evolving vortex structures can 
also propagate unchanged at macroscopic 
distances [4], where they can be detected 
experimentally. 

This study introduces a hybrid approach 
to analysis of dynamics of quantum systems, 
comprising two stages: 

numerical solution of the nonstationary 
Schrödinger equation in expanding space, 
which makes it possible to identify quantum 
vortex structures for large values of r and t; 

hydrodynamic interpretation including 
the distributions of such field quantities as 
probability density and probability current.

Based on this hybrid approach, we 
consider space-time evolution of the 
photoelectron generated due to ionization of 
a two-dimensional hydrogen-like atom by an 
ultrashort electromagnetic pulse. 

The two-dimensional approximation 
is valid, in particular, if electron motion 
in an atom is confined to two degrees of 
freedom, for example, in case of motion 
in a semiconductor quantum well [14, 15]. 
Furthermore, such a simplified problem 
statement is well suited for testing the 
numerical algorithm and analyzing the 
evolution of vortex structures, since they 
are easy to identify in the two-dimensional 
case.

Additionally, we compare the data from nu-
merical simulation with the analytical results 
obtaining within the framework of the first 
Born approximation. 

Problem Statement

We consider the two-dimensional hydrogen-
like atom interacting with an ultrashort 
electromagnetic pulse. The Hamiltonian for 
this problem is given by 
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where Ĥ0 is the Hamiltonian of a free atom; ρ 
and φ are the polar coordinates and for conve-
nience we took the following potential 

U = UC/2, 

where UC =−1/ρ is the ordinary Coulomb 
potential.  

Interaction between an atom and electro-
magnetic field is described by the interaction 
part of the Hamiltonian V̂, where d̂ is the 
atomic dipole moment operator, Ẽ(t) =exẼ(t) 
is the electric field vector of an ultrashort 
pulse, polarized along the x axis, with the 
amplitude 

( ) ( )0 cos ,  0 ,
     0,             ,
E t t T

E t
t T

ω < <
= 

>
 (2)

where E0 is the time-independent amplitude, ω 
is the frequency and T is the pulse duration.

Here we immediately formulated the 
Hamiltonian in atomic units ħ = 1, me = 1, e =1.

Numerical Method 

We described the evolution of the given 
quantum system using an approach based 
on numerical solution of the non-stationary 
Schrödinger equation. The simulation program 
consists of several modules.

The first module is intended for numerically 
solving the Schrödinger equation in coordinate 
and momentum representations during 
interaction with the electromagnetic pulse. A 
standard algorithm calculating the propagator 
of the wave function (operator splitting 
method, see, for example, [16]) is used for the 
time increment:

( ) ( ) ( )ˆ, exp , .t t iH t tΨ +∆ = − ∆ Ψr r (3)

This propagator is divided into three 
components depending, in the following 
manner, only on the coordinate operator and 
only on the momentum operator:

( )

( )

( )
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(4)

The evolution of the wave function at half-
steps ∆t/2 is simulated in the momentum 
space; the wave function is converted to the 
momentum representation using the fast 
Fourier transform for this purpose. The central 
component of the propagator is calculated in 
the coordinate representation at step ∆t using 
the inverse Fourier transform.

The second program module is intended for 
converting the wave function obtained after 
applying an external pulse, by transformation 
of variables in expanding (scaled) space, with 
the help of the variables introduced by Soloviev 
and Vinitsky [17]. This method is described 
in detail in [13]. Notably, the time t → ∞ 
corresponds to scaled time τ → −0, and the 
Coulomb potential turns into a δ function. This 
makes it impossible to numerically calculate 
the equation up to τ = 0; additionally, the 
calculation error increases near the origin. 

We should also note that when τ → −0, 
the squared modulus of the transformed wave 
function is the probability density for the 
momentum of the photoelectron for t → ∞, 
when field pulse has long ended (all bound 
states of the discrete spectrum collapse).

Since the space and momentum distribution 
of the photoelectron is the primary focus in our 
problem, the evolution of the quantum system 
was simulated in the calculations below up to 
the time τ = 0.001 (in atomic units); it was 
found that the solution becomes virtually inde-
pendent of scaled time τ. 

Numerical Results

Numerical simulation of the evolution of 
the quantum system was carried out for the fol-
lowing parameters of the electromagnetic pulse 
(2): E0 = 0.5, ω = π, and  pulse duration T 
varied in the integer range from 1 to 9. Thus, 
a pulse is either an even or an odd number of 
half-periods of oscillations.

It is assumed that the atom is initially in the 
ground state with the wave function (eigenwave 
function of Hamiltonian Ĥ0)
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( ) ( )(0)
1,0 2 / exp ,Ψ = −ρ π ρ (5)

where the first subscript corresponds to the 
principal quantum number n=1 and the second 
subscript to projection of the orbital angular 
momentum along the z axis, m = 0. 

The nonstationary Schrödinger equation was 
solved numerically with the following parame-
ters: the computational domain in the coordi-
nate space was a 60 × 60 (a.u.)2 square, cov-
ered with a uniform structured mesh of 2048 × 
2048 cells; the time step was Δt =10-3 a.u. Such 
parameters were selected based on preliminary 
analysis of the accuracy of the solution to be 
obtained and grid convergence, providing ac-
ceptable quality of resolution of the wave func-
tion.

Let us first consider the case when pulse 
duration T = 4. Fig. 1, a plots the square root 
of probability density for the photoelectron 
(for brevity, the phrase ‘square root’ is omitted 
from now on) 

( ), ,x y TΨ ≡ Ψ

on a logarithmic scale at the time when the 
pulse ends. Local regions with low values of |Ψ| 
(white ‘spots’ in Fig. 1, a) are vortex structures.

Enlarged fragment of |Ψ| together with vector 
plot of the probability current 

( )* *1/ 2i= Ψ ∇Ψ −Ψ∇ΨJ

are plotted in Fig. 1, b (for greater clarity, 
the vectors in the figure were filtered twice 
and their lengths are the same). Two vortices 
rotating in opposite directions can be observed 
in this region. Another vortex structure is lo-

cated farther from the center but has worse 
resolution due to extremely small |Ψ| values in 
this region. Other vortex structures that cannot 
be resolved on this mesh may be present. All 
of these structures can be born, and then move 
and annihilate each other over time. Fig. 1,b 
shows the precise moment when a vortex pair 
is born. 

Since we are primarily interested in the 
vortex structures moving away from the center 
of the system ‘at infinity’ and manifesting for 
continuous spectrum, we are going to consider 
the probability density for t>>T obtained using 
the expanding space method with τ → −0. We 
are then going to plot the probability density 
for the momentum of the photoelectron

( ), ,x yk k t bΨ →∞ ≡

Fig. 2, a plots the probability density for the 
momentum with t>>T (on a logarithmic scale). 
Two vortices located on the axis ky symmet-
rically with respect to the origin are clearly 
visible; an enlarged fragment with the vector 
plot of probability current in momentum rep-
resentation is shown in Fig. 2,b. Thus, a pair of 
symmetric vortices evolves due to ionization of 
an atom by an electromagnetic pulse. A saddle 
point can be seen at kx = –0.4, ky = 2.2. 

Let us now consider the probability density 
for momentum with smaller T. Fig. 3 plots 
the probability |b| for T = 1 and T=2. There 
are apparently no vortex structures at T = 1 
(possibly due to insufficient grid resolution), 
while probability density turns out to be 
strongly asymmetric at small values of kx (see 
Fig. 3, a).

а) b)

Fig. 1. Probability density of photoelectron, |Ψ(x,y,T)| ≡ |Ψ|, at pulse end (a) and its enlarged fragment 
with vector plot of probability current near vortex structure (b); birth of vortex pair is shown; T = 4
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а) b)

Fig. 2. Probability density for momentum of photoelectron for t >> T, 
|Ψ(kx, ky, t → ∞)| ≡ |b| (a) and vector plot of probability current in momentum representation 

near quantum vortex (b); T = 4

b) c)

a)

Fig. 3. Probability density for momentum of photoelectron for t >> T, |Ψ(kx, ky, t → ∞)| ≡ |b|, 
for different pulse durations T: T = 1 (a), no quantum vortices observed; T = 2 (b) 

and enlarged fragment with vector plot of probability current near quantum vortex (c)
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 As seen from Fig. 3, b, a pair of pronounced 
symmetric vortices evolve with increased pulse 
duration (T = 2); their position corresponds 
to the position of vortices at T = 4 to a high 
degree of accuracy. An enlarged fragment with 
the vector plot of probability current near 
the vortex is shown in Fig. 3, c. Apparently, 
the vortex is resolved on the mesh with good 
accuracy.

Evidently, a pair of vortices evolve in 
the same region with the coordinates kx ≈ 0, 
ky ≈ ±2.3 if the number of pulse half-periods is 
even (T = 2, 4, 6, 8). No other distinct vortices 
can be observed in this case. 

The opposite situation occurs with an odd 
number of pulse half-periods (T = 3, 5, 7, 9). 
The position of the distinct vortex changes with 
changing T. Fig. 4 plots the probability density 
|b| and probability current for pulse duration T 
= 3 as an example. Several vortex structures 
evolve but only the pair closer to the origin 
is best resolved. Notably, the coordinates of 
the vortex position approach the origin with 
increasing T. 

Fig. 5 plots the probability density for fixed 
zero ky=0  

( ) ( ), 0,x y xk k t b kΨ = →∞ ≡

for several values of T. A narrow peak starts 
to form as T increases, corresponding to the 
situation for ionization by monochromatic field 
at T → ∞ and centered on the value

( )12 2.3xk E= ± + ≈ ±ω

where E1 = –0.5 is the energy of the ground 
state of the hydrogen atom.

The probability |b(kx)| exhibits a clear asym-
metry of the peaks centered close to kx ≈ ±2.3 
with respect to the origin, while the heights of 
these peaks are almost identical for even dura-
tion T = 8. Another consideration is that due to 
the specifics of calculations in expanding space 
(in particular, because the Coulomb potential 
tends to the δ function), numerical simulation 
yields oscillations and a sharp increase in |b(kx)| 
with kx → 0.

First-order Born Approximation 

Numerical simulation based on the nonsta-
tionary Schrödinger equation includes the en-
tire spectrum of processes describing the evolu-
tion of the given quantum system but does not 
necessarily explain the physical mechanisms of 
the phenomena considered. For this reason, 
it is of particular interest to find approximate 
analytical solutions to the problem, allowing 
to obtain a clear physical interpretation of the 
process. We estimated the applicability of the 
first-order Born approximation to solving the 
given problem.

We can represent the solution of the nonsta-
tionary Schrödinger equation as an expansion 
in eigenwave functions Ψ(0) of an unperturbed 
Hamiltonian [14]:

а) b)

Fig. 4. Probability density for momentum of photoelectron for t >> T, 
|Ψ(kx, ky, t → ∞)| ≡ |b| (a) and fragment with vector plot of probability current 

near two quantum vortices (b); T = 3
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where Ψ(0)
n,m is the wave function of the discrete spec-

trum; n = 1,2,... is the principal quantum number; 
m = 0, ±1, ±2,…, ±(n – 1) is the magnetic quan-
tum number; the discrete spectrum energy is: 

( )2
1 ;

8 1/ 2
nE

n
= −

−
Ψ(0)

E,m is the wave function of the continuous spectrum 
(Coulomb wave) and the corresponding energy

( )2 2 2/ 2 / 2x y x yE k E E k k= = + = +

0, 1, 2...m = ± ±

Expanding the amplitudes a(t) and b(t) as a 
series in powers of small perturbations and leaving 
only the terms up to and including the first order, 
we obtain:
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where it is assumed that the atom is in the 
ground state at the initial time (denoted by ad-
ditional subscripts (1,0)); the superscripts for 
wave functions and amplitudes correspond to 
the order of smallness. The function Ψ(1)

d corre-
sponds to transition to the excited state of the 
discrete spectrum (the second term in Eq. (6)), 
and Ψ(1)

c to transition to the excited state of the 
continuous spectrum (the last term in Eq. (6)).

We shall consider the following prob-
ability densities for momentum of pho-
toelectron |Ψ(kx,ky=0,t)| ≡ |b(kx,t)| and 
|Ψ(kx=0,ky,t)| ≡ |b(ky,t)|. To find them, let us 
write Ψ(1)

c in kx and ky representations, replacing 
the Coulomb wave under the integral with a 
cylindrical wave

( ) ( ) ( )(0)
, 2 exp / 2mE m J E imΨ = ρ ϕ πr

(wave function of the free electron).
In the first order of perturbation, we obtain 

the following expressions for b(kx,t) and b(ky,t):
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Fig. 5. Probability density for momentum of photoelectron for t >> T, 
|Ψ(kx, ky = 0, t → ∞)| ≡ |b(kx)|, for different pulse durations
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where the plus sign for b(1)(ky,t) corresponds to 
the case m > 0, the minus sign corresponds to 
the case m < 0. The expressions after the first 
equality in (7) are the scalar product of the 
states |Ψ(1)

c(t)⟩ and |ki⟩ (i=x,y) in the bra–ket 
notation. The ket |kx⟩ corresponds to the state 
of a particle with a certain momentum and 
takes the form

( ) ( )exp / 2
xx k xx k x ik x≡ =ϕ π

in the coordinate representation (the situation 
is similar for the ket |ky⟩).

We obtained probabilities (7) using the 
following properties and representations of 
Bessel functions:

( ) ( ) ( )
0

/ ,m mJ k J k d k k k
∞

′ ′= −∫ ρ ρ ρ ρ δ

( ) ( )
2

0
( / 2 ) exp cos ,m

mJ x i ix im d= − +∫
π

π ϕ ϕ ϕ (8)

( ) ( )
2

0
(1/ 2 ) exp sin .mJ x ix im d= − +∫

π
π ϕ ϕ ϕ

To find b(1)
E,m(t), let us substitute expansion 

(6) into the Schrödinger equation; we obtain 
the following expression:
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where ωE1 = E – E1.
At last, b(1)(kx,t) and b(1)(ky,t) take the 

following final form:
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Fig. 6 compares analytical result (10) with 
the result of numerical simulation for the pulse 
Ẽ(t) defined by Eq. (2). 

Let us discuss some of the peculiarities ob-
served. The numerical result and the analytical 
solution diverge greatly in the region of small wave 
numbers (kx ≈ 0). This is due to several factors:

Fig. 6. Comparison of analytical calculation and numerical simulations 
(probabilities are normalized to left resonance peak); T = 4
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large ‘error’ in numerical simulation in this 
region because of the above-mentioned specif-
ics of calculations in scaled space, which does 
not allow to regard the result obtained for small 
kx as close to true;

well-known limitations of the Born ap-
proximation, implying, in our case, that the 
Coulomb wave in (5) is replaced by a cylindri-
cal wave.

However, the agreement between numerical 
simulation and analytical solution in the region 
of resonance values 

( )12xk E≈ ± +ω

is rather good, even though the Born 
approximation does not describe the asymmetry 
of the distribution with respect to kx= 0. This 
asymmetry is fairly natural (see also Fig. 1), 
since the evolution of the wave function of the 
electron in an initially bound state absolutely 
cannot have the same symmetry, despite the 
‘symmetric’ effect of the electric pulse in time. 

The vortices that could be identified for the 
given pulse duration by analyzing the probability 
|b(ky,t)| are not described by the first-order Born 
approximation, since b(1)(ky,t) = 0 (see Eq. (10)).

Thus, it seems natural to assume that the 
second order of perturbation theory, containing 
transitions through intermediate states, should 
allow to identify vortices most likely associated 
with destructive interference of such transitions.

Conclusion 

Based on numerical simulation of the 
nonstationary Schrödinger equation, we have 
carried out studies on space-time evolution of a 
photoelectron appearing due to interaction of an 
ionizing electromagnetic ultrashort pulse with 
a hydrogen-like atom in the two-dimensional 
approximation. We have shown that vortex-

like structures appeared during atom-field 
interaction: the probability density of the 
photoelectron has isolated zeros in the centers of 
these vortices, and the corresponding probability 
fluxes revolve around each these centers. The 
evolution of vortices in time is associated with 
their annihilation, birth and modifications. 
Finally, there are only stable vortices remaining 
with t → ∞, and they can observed at long 
distances from the parent atom. 

We have shown that localization of the 
vortices strongly depends on pulse duration T. 
Thus, the positions of vortices in momentum 
space for the given cosine pulse with fixed 
parameters E0 = 0.5 and ω = π remained the 
same with different T, which was equal to an 
even number of half-periods (T = 2, 4, 6, 8). If 
the duration T was equal to an odd number of 
half-periods (T = 3, 5, 7, 9), the centers of the 
vortices shifted towards the origin as T increased 
and new vortex structures formed. There were 
no vortices when pulse duration was T = 1.

We have obtained analytical expressions 
for probability density for the momentum of 
the photoelectron within the first-order Born 
approximation. Quantum vortices could not be 
identified by these expressions, indicating that 
quantum vortices are generated by destructive 
interference of transitions through different 
intermediate states of discrete or continuous 
spectra, which can be taken into account in 
the second order of perturbation theory.

We expect to carry out more detailed 
studies of this problem in a separate paper by 
constructing perturbation theory series. 

The information obtained in our work may 
be useful in design of experimental studies on 
related problems. 

The study was financed by RFBR, grant no. 
15-02-07794.
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