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We investigate the space-time evolution of a photoelectron formed as a result of interaction
of an ultrashort electromagnetic pulse with a hydrogen-like atom in the two-dimensional
approximation. A characteristic feature of the considered evolution is the presence of singular
points in the electron probability density, which can be interpreted as centers of quantum
vortices. Based on numerical simulation of the time-dependent Schrédinger equation, we analyze
localization, structure and number of quantum vortices in ordinary and momentum space. We
have also considered the probability flux. We have established that the analyzed values given are
strongly dependent on the duration of ultrashort electromagnetic pulse. The numerical solution is
compared with the analytical one obtained in the framework of the Born approximation.
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Introduction

Numerous studies have considered struc-
tures that can be interpreted as vortices in
quantum systems [1—6]. For example, a vor-
tex structure, generated by a focused laser
beam in Bose—Einstein condensate, was dis-
covered recently [1]. This structure is similar
to the Karman vortex street, well known in
fluid dynamics [7].

There is reason to believe that similar struc-
tures may evolve in simple single-electron
quantum systems. In particular, vortex-like
formations were investigated for quantum sys-
tems produced through photoionization of a
single atom [5] or through atom-ion collision
[6]. These formations manifest themselves as
specific regions in space (ordinary or momen-
tum), with their own centers, which are forbid-
den regions for electrons (isolated zeros of a
single-electron wave function), and probability
flux revolving around these centers.

Understanding the nature of vortices and
developing methods for controlling them is of
clear interest for fundamental studies, as well
as for solving applied problems, e.g., in pho-
toelectron spectroscopy.

In this study, we investigate formation and
evolution of quantum vortices on the example
of the well-known problem of ionization of
a hydrogen-like atom by a laser pulse. The
existing approximate approaches to solving
such problem (see, for example, [10, 11]) are
usually inapplicable to analysis of the evolu-
tion of vortex structures. Thus, the solutions
obtained using quasi-classical approaches do
not include vortex structures as they are asso-
ciated with singularities of quantum pressure
discarded due to small 7#2.

Nevertheless, this information can be ob-
tained by means of numerical simulation of the
nonstationary Schrodinger equation [4]. Be-
sides, the hydrodynamic representation based
on the Madelung equations [8] provides a clear
interpretation for the solution to the problem
on evolution of quantum vortices. Another
benefit of this approach is that it allows to in-
troduce quantum pressure [9] which (as not-
ed above) governs vortex trajectories and can
serve as an indicator of the evolution of the
entire quantum system. However, the singular-
ities appearing as probability density tends to
zero make it problematic to use the Madelung
equations for simulating evolution of these
vortex-like structures, whose nature is similar
to that of potential vortices considered in the
theory of inviscid flow [7].
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On the other hand, there are also some
difficulties in numerically solving the nonsta-
tionary Schrodinger equation because the wave
function of the photoelectron includes an os-
cillating factor taking the form

ex iﬂﬁ
Pl

(m and r are the mass and the position of the
electron, ¢ is the time), leading to divergence
for large values of r and .

This issue can be resolved, in particular,
through removing strongly oscillating phases
by transformation of variables in expanding
space and by using time scaling [12, 13].
Notably, the evolving vortex structures can
also propagate unchanged at macroscopic
distances [4], where they can be detected
experimentally.

This study introduces a hybrid approach
to analysis of dynamics of quantum systems,
comprising two stages:

numerical solution of the nonstationary
Schrodinger equation in expanding space,
which makes it possible to identify quantum
vortex structures for large values of » and #;

hydrodynamic interpretation including
the distributions of such field quantities as
probability density and probability current.

Based on this hybrid approach, we
consider space-time evolution of the
photoelectron generated due to ionization of
a two-dimensional hydrogen-like atom by an
ultrashort electromagnetic pulse.

The two-dimensional approximation
is valid, in particular, if electron motion
in an atom is confined to two degrees of
freedom, for example, in case of motion
in a semiconductor quantum well [14, 15].
Furthermore, such a simplified problem
statement is well suited for testing the
numerical algorithm and analyzing the
evolution of vortex structures, since they
are easy to identify in the two-dimensional
case.

Additionally, we compare the data from nu-
merical simulation with the analytical results
obtaining within the framework of the first
Born approximation.

Problem Statement

We consider the two-dimensional hydrogen-
like atom interacting with an ultrashort
electromagnetic pulse. The Hamiltonian for
this problem is given by
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H=H0+V,
fig=2* +U(r) =
(2 10 12) 1 D
B P ey iy ol e
2\op” pOp p op~) 2p
V =—dE(t)= pcos(p)E(t),

where HO is the Hamiltonian of a free atom; p
and ¢ are the polar coordinates and for conve-
nience we took the following potential

U=U,2,

where U. =-1/p is the ordinary Coulomb
potential.

Interaction between an atom and electro-
magnetic field is described by the interaction
part of the Hamiltonian ¥ where d is the
atomic dipole moment operator, E(?) =e F(1)
is the electric field vector of an ultrashort
pulse, polarized along the x axis, with the
amplitude

- Eycos(at), 0<t<T,

E(t) ={ 2)

0, t>T,

where £ is the time-independent amplitude, o

is the frequency and T is the pulse duration.
Here we immediately formulated the

Hamiltonian in atomic units 7 = 1, m, = 1, e =1.

Numerical Method

We described the evolution of the given
quantum system using an approach based
on numerical solution of the non-stationary
Schrédinger equation. The simulation program
consists of several modules.

The first module is intended for numerically
solving the Schrodinger equation in coordinate
and momentum representations  during
interaction with the electromagnetic pulse. A
standard algorithm calculating the propagator
of the wave function (operator splitting
method, see, for example, [16]) is used for the
time increment:

¥ (r,t+At) = exp(—iI:IAt)‘P (r,6). (3

This propagator is divided into three
components depending, in the following
manner, only on the coordinate operator and
only on the momentum operator:

~2
.p° At
W(r,t+At)=exp| i 2-2L
(r,t+Ar) exp( i ij

xexp[—i(U(r) + V(t +%D At} X (4)

The evolution of the wave function at half-
steps Af#/2 is simulated in the momentum
space; the wave function is converted to the
momentum representation using the fast
Fourier transform for this purpose. The central
component of the propagator is calculated in
the coordinate representation at step Af using
the inverse Fourier transform.

The second program module is intended for
converting the wave function obtained after
applying an external pulse, by transformation
of variables in expanding (scaled) space, with
the help of the variables introduced by Soloviev
and Vinitsky [17]. This method is described
in detail in [13]. Notably, the time ¢ — o
corresponds to scaled time t — —0, and the
Coulomb potential turns into a § function. This
makes it impossible to numerically calculate
the equation up to t = 0; additionally, the
calculation error increases near the origin.

We should also note that when t — —0,
the squared modulus of the transformed wave
function is the probability density for the
momentum of the photoelectron for ¢ — oo,
when field pulse has long ended (all bound
states of the discrete spectrum collapse).

Since the space and momentum distribution
of the photoelectron is the primary focus in our
problem, the evolution of the quantum system
was simulated in the calculations below up to
the time t = 0.001 (in atomic units); it was
found that the solution becomes virtually inde-
pendent of scaled time .

Numerical Results

Numerical simulation of the evolution of
the quantum system was carried out for the fol-
lowing parameters of the electromagnetic pulse
(2): E, = 0.5, ® = n, and pulse duration T’
varied in the integer range from 1 to 9. Thus,
a pulse is either an even or an odd number of
half-periods of oscillations.

It is assumed that the atom is initially in the
ground state with the wave function (eigenwave
function of Hamiltonian )
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¥ (p)=v2/ 7 exp(-p). ()

where the first subscript corresponds to the
principal quantum number n=1 and the second
subscript to projection of the orbital angular
momentum along the z axis, m = 0.

The nonstationary Schrodinger equation was
solved numerically with the following parame-
ters: the computational domain in the coordi-
nate space was a 60 x 60 (a.u.)? square, cov-
ered with a uniform structured mesh of 2048 x
2048 cells; the time step was Af =103 a.u. Such
parameters were selected based on preliminary
analysis of the accuracy of the solution to be
obtained and grid convergence, providing ac-
ceptable quality of resolution of the wave func-
tion.

Let us first consider the case when pulse
duration 7= 4. Fig. 1, a plots the square root
of probability density for the photoelectron
(for brevity, the phrase ‘square root’ is omitted
from now on)

[ (.0 7)| =] ¥

on a logarithmic scale at the time when the
pulse ends. Local regions with low values of ||
(white ‘spots’ in Fig. 1, a) are vortex structures.

Enlarged fragment of |¥| together with vector
plot of the probability current

J :1/2i(‘P*V‘P—‘PV‘P*)

are plotted in Fig. 1, b (for greater clarity,
the vectors in the figure were filtered twice
and their lengths are the same). Two vortices
rotating in opposite directions can be observed
in this region. Another vortex structure is lo-
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cated farther from the center but has worse
resolution due to extremely small || values in
this region. Other vortex structures that cannot
be resolved on this mesh may be present. All
of these structures can be born, and then move
and annihilate each other over time. Fig. 1,b
shows the precise moment when a vortex pair
is born.

Since we are primarily interested in the
vortex structures moving away from the center
of the system ‘at infinity’ and manifesting for
continuous spectrum, we are going to consider
the probability density for #>>T obtained using
the expanding space method with t — —0. We
are then going to plot the probability density
for the momentum of the photoelectron

¥ (e Kyt = o0 =8

Fig. 2, a plots the probability density for the
momentum with #>>7 (on a logarithmic scale).
Two vortices located on the axis ky symmet-
rically with respect to the origin are clearly
visible; an enlarged fragment with the vector
plot of probability current in momentum rep-
resentation is shown in Fig. 2,b. Thus, a pair of
symmetric vortices evolves due to ionization of
an atom by an electromagnetic pulse. A saddle
point can be seen at k. = —0.4, ky =2.2.

Let us now consider the probability density
for momentum with smaller 7. Fig. 3 plots
the probability |b| for 7= 1 and T=2. There
are apparently no vortex structures at 7' = 1
(possibly due to insufficient grid resolution),
while probability density turns out to be
strongly asymmetric at small values of k_(see
Fig. 3, a).

i
SRR )
thltalalalalals
SRR,
thelaal il

&

AR

~N

AR
LR,
A It Teslalel
Mt
e 11

LIRSS
,2} et
f

Wy
1

ek
7

s
&
b

AR
S Y e
\\x\zna““““»‘x“\x

Fig. 1. Probability density of photoelectron, [¥(x,y,T)| = |¥|, at pulse end (@) and its enlarged fragment
with vector plot of probability current near vortex structure (b); birth of vortex pair is shown; 7= 4
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Fig. 2. Probability density for momentum of photoelectron for 7 >> T,
(k. k, t— w)| = || (@) and vector plot of probability current in momentum representation
near quantum vortex (b); T =4
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Fig. 3. Probability density for momentum of photoelectron for 7 >> T, [¥(k,, k , t — )| = |8,
for different pulse durations 7 7= 1 (a), no quantum vortices observed; T=2 (b)
and enlarged fragment with vector plot of probability current near quantum vortex (c)
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As seen from Fig. 3, b, a pair of pronounced
symmetric vortices evolve with increased pulse
duration (7" = 2); their position corresponds
to the position of vortices at 7= 4 to a high
degree of accuracy. An enlarged fragment with
the vector plot of probability current near
the vortex is shown in Fig. 3, c. Apparently,
the vortex is resolved on the mesh with good
accuracy.

Evidently, a pair of vortices evolve in
the same region with the coordinates k =~ 0,
ky ~ £2.3 if the number of pulse half-periods is
even (T'=2, 4, 6, 8). No other distinct vortices
can be observed in this case.

The opposite situation occurs with an odd
number of pulse half-periods (7' = 3, 5, 7, 9).
The position of the distinct vortex changes with
changing 7. Fig. 4 plots the probability density
|p| and probability current for pulse duration T
= 3 as an example. Several vortex structures
evolve but only the pair closer to the origin
is best resolved. Notably, the coordinates of
the vortex position approach the origin with
increasing 7.

Fig. 5 plots the probability density for fixed
Zero ky=0

“P(k k

ok :0,t—>oo)‘s|b(kx)|

for several values of 7. A narrow peak starts
to form as 7 increases, corresponding to the
situation for ionization by monochromatic field
at T — oo and centered on the value

-4 -2 0 2 4

=
\\.
W\

-4 -2 0 2 4

ky=%2(0+E)~+23

where £ = —0.5 is the energy of the ground
state of the hydrogen atom.

The probability [b(k )| exhibits a clear asym-
metry of the peaks centered close to k =~ 2.3
with respect to the origin, while the heights of
these peaks are almost identical for even dura-
tion 7= 8. Another consideration is that due to
the specifics of calculations in expanding space
(in particular, because the Coulomb potential
tends to the & function), numerical simulation
yields oscillations and a sharp increase in |b(k )|
with & — 0.

First-order Born Approximation

Numerical simulation based on the nonsta-
tionary Schrédinger equation includes the en-
tire spectrum of processes describing the evolu-
tion of the given quantum system but does not
necessarily explain the physical mechanisms of
the phenomena considered. For this reason,
it is of particular interest to find approximate
analytical solutions to the problem, allowing
to obtain a clear physical interpretation of the
process. We estimated the applicability of the
first-order Born approximation to solving the
given problem.

We can represent the solution of the nonsta-
tionary Schrodinger equation as an expansion
in eigenwave functions ¥© of an unperturbed
Hamiltonian [14]:
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I

f;//f,,//
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Fig. 4. Probability density for momentum of photoelectron for t >> T,
P (k,, k, t— )| = |b| (a) and fragment with vector plot of probability current
near two quantum vortices (b); T =3
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Fig. 5. Probability density for momentum of photoelectron for 7 >> T,

\B(k, k,
Y(r,7)= Z Aym (t)e_iEn"Ifﬁl(’)zn (r)+
n,m

o | (5)
w3 [ b (1) WD (x)dE,
m ()

where ‘P‘?m is the wave function of the discrete spec-
trum; n = 1,2,... is the principal quantum number;

m =0, 1, £2,..., =(rn — 1) is the magnetic quan-
tum number; the discrete spectrum energy is:
E, = ! ;
n=—"~_ A~ >
8(n—1/2)

PO is the wave function of the continuous spectrum
(Coulomb wave) and the corresponding energy

2 2 2
E=k/2=E, +E, :(kx +ky)/2
m=0,%1,42...

Expanding the amplitudes a(f) and b(7) as a
series in powers of small perturbations and leaving
only the terms up to and including the first order,
we obtain:

¥ (r,0) =¥ (r,0) + ¥ (r,0) + ¥P (r,0) =

- e‘iElf‘I’g,Oo) (r)+>] a:gl,zn;l,o (r)e i, (r)+
(6)

n,m

T —iEt\gy (0
+>, J bl(:",)m;l,O (t)e IEZ\P%,)m (r)dE,
m 0

=0, t — )| =|b(kx)|, for different pulse durations

where it is assumed that the atom is in the
ground state at the initial time (denoted by ad-
ditional subscripts (1,0)); the superscripts for
wave functions and amplitudes correspond to
the order of smallness. The function ¥(}) corre-
sponds to transition to the excited state of the
discrete spectrum (the second term in Eq. (6)),
and ¥ to transition to the excited state of the
continuous spectrum (the last term in Eq. (6)).

We shall consider the following prob-
ability densities for momentum of pho-
toelectron  |¥(k.k, =0 = |b(k,n| and
|¥(k, =0,k ,0)| = |b(k,n|. To find them, let us
write ¥()'in k_and ﬁy representations, replacing
the Coulomb wave under the integral with a
cylindrical wave

¥ (r) = (V2Ep)exp (imp) /27

(wave function of the free electron).
In the first order of perturbation, we obtain
the following expressions for b(k ,7) and b(ky, D:

b0 (ko) = ™ (k[0 (1)) =

= S[i-sen(k, )]—lml b o (0)
m

b D (k)= (k, [wD) (t)> -

- Z[i sgn(ky )]_|m| bgy),mgl,o (¢),
m

(7
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where the plus sign for b“)(k f) corresponds to
the case m > 0, the minus 31gn corresponds to
the case m < O The expressions after the first
equality in (7) are the scalar product of the
states [¥ (7)) and |k) (i=x,y) in the bra—ket
notation. The ket |k) corresponds to the state
of a particle with a certain momentum and
takes the form
(x|ky) =0 (x)= exp(ik,x) /27

in the coordinate representation (the situation
is similar for the ket [k )).

We obtained probablhtles (7) using the
following properties and representations of
Bessel functions:

e 0]

[ (kp) s (') pd p =5 (k—K') 1 &,

0
2

o (x)=("/27) J exp(—ixcos @ +imp)de, (8)
0
2
I (x)=(1/27) I exp (—ixsin g +ime)de.
0

To find b(” =(1), let us substitute expansion
(6) into the Schrodlnger equation; we obtain
the following expression:

_a
M t (0) (0)
bE,m(t):_iJ‘<\PE,m‘V‘\P1,O>dt':
0
, )
=i(8y1 + 1) 3“2E5/2jE e gy,
1 2E
where o, = E— E|.
At last, bO(k,H and bO(k,0) take the
following ﬁnal form:
W o Okl
0 k)= 2
(1+kx)
L t'
x[E(r)e =" ar, (10)
0
M _
b (ky.1)=0

Fig. 6 compares analytical result (10) with
the result of numerical simulation for the pulse
E(?) defined by Eq. (2).

Let us discuss some of the peculiarities ob-
served. The numerical result and the analytical
solution diverge greatly in the region of small wave
numbers (k = 0). This is due to several factors:

1.5 | T T T T T T T T
bl ! ! Analytics -
| ! Calculation —-—-—
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L | | '4‘\ i
1.0 F . [
a R
N A
A A
CL M
Pt T
b T
-[ b '\" ‘
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0.0 baxd AL / ] ‘] ] 1 [ A VNN
-5 -4 3 -2 -1 0 1 2 3 4 5

Fig. 6. Comparison of analytical calculation and numerical simulations
(probabilities are normalized to left resonance peak); 7= 4
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large ‘error’ in numerical simulation in this
region because of the above-mentioned specif-
ics of calculations in scaled space, which does
not allow to regard the result obtained for small
k_as close to true;

well-known limitations of the Born ap-
proximation, implying, in our case, that the
Coulomb wave in (5) is replaced by a cylindri-
cal wave.

However, the agreement between numerical
simulation and analytical solution in the region
of resonance values

X zi,lZ(aHEl)

is rather good, even though the Born
approximation does not describe the asymmetry
of the distribution with respect to k= 0. This
asymmetry is fairly natural (see also Fig. 1),
since the evolution of the wave function of the
electron in an initially bound state absolutely
cannot have the same symmetry, despite the
‘symmetric’ effect of the electric pulse in time.

The vortices that could be identified for the
given pulse duration by analyzing the probability
|b(k,,1)| are not described by the first-order Born
approximation, since b"(k ,7) = 0 (see Eq. (10)).

Thus, it seems natural to assume that the
second order of perturbation theory, containing
transitions through intermediate states, should
allow to identify vortices most likely associated
with destructive interference of such transitions.

Conclusion

Based on numerical simulation of the
nonstationary Schrodinger equation, we have
carried out studies on space-time evolution of a
photoelectron appearing due to interaction of an
ionizing electromagnetic ultrashort pulse with
a hydrogen-like atom in the two-dimensional
approximation. We have shown that vortex-

like structures appeared during atom-field
interaction: the probability density of the
photoelectron has isolated zeros in the centers of
these vortices, and the corresponding probability
fluxes revolve around each these centers. The
evolution of vortices in time is associated with
their annihilation, birth and modifications.
Finally, there are only stable vortices remaining
with ¢ — o, and they can observed at long
distances from the parent atom.

We have shown that localization of the
vortices strongly depends on pulse duration 7.
Thus, the positions of vortices in momentum
space for the given cosine pulse with fixed
parameters E; = 0.5 and o = n remained the
same with different 7, which was equal to an
even number of half-periods (7' = 2, 4, 6, 8). If
the duration 7 was equal to an odd number of
half-periods (7 = 3, 5, 7, 9), the centers of the
vortices shifted towards the origin as 7T increased
and new vortex structures formed. There were
no vortices when pulse duration was 7= 1.

We have obtained analytical expressions
for probability density for the momentum of
the photoelectron within the first-order Born
approximation. Quantum vortices could not be
identified by these expressions, indicating that
quantum vortices are generated by destructive
interference of transitions through different
intermediate states of discrete or continuous
spectra, which can be taken into account in
the second order of perturbation theory.

We expect to carry out more detailed
studies of this problem in a separate paper by
constructing perturbation theory series.

The information obtained in our work may
be useful in design of experimental studies on
related problems.

The study was financed by RFBR, grant no.
15-02-07794.
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