РАДИОФИЗИКА

УДК 621.746.62

И.Л. Никулин, А.В. Перминов

МОДЕЛИРОВАНИЕ ИНДУКЦИОННЫХ ПРОЦЕССОВ В ПРОВОДЯЩЕМ ЦИЛИНДРЕ, ПОМЕЩЕННОМ В НЕОДНОРОДНОЕ ПЕРЕМЕННОЕ МАГНИТНОЕ ПОЛЕ

I.L. Nikulin, A.V. Perminov

Perm National Research Polytechnic University, 29 Komsomolsky Pr., Perm, 614990, Russia

SIMULATION OF THE INDUCTION PROCESSES IN THE CONDUCTIVE CYLINDER PLACED IN THE NON-UNIFORM VARIABLE MAGNETIC FIELD

В статье предложена математическая модель, описывающая возникновение индукционного магнитного поля, токов и Джоулевой теплоты в проводящем цилиндре, находящемся в неоднородном переменном магнитном поле. Приведены и проанализированы результаты вычислительных экспериментов.

МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ. МАГНИТНОЕ ПОЛЕ. УРАВНЕНИЕ ДИФФУЗИИ МАГНИТ-НОГО ПОЛЯ. МАГНИТНОЕ ЧИСЛО РЕЙНОЛЬДСА. ИНДУКЦИОННЫЕ ТОКИ.

In this paper the mathematical model of generating of induction magnetic field, electric currents and Joule heat in conductive cylinder placed in non-uniform variable magnetic field is suggested. The results of the computational experiments are given and analyzed.

MATHEMATICAL SIMULATION. MAGNETIC FIELD. MAGNETIC FIELD DIFFUSION EQUATION. REYN-OLDS MAGNETIC NUMBER. INDUCTION CURRENTS.

Технологический прогресс в авиастроении в значительной мере определяется качеством применяемых конструкционных материалов. Так, при индукционной плавке никелевых жаропрочных сплавов возникают проблемы, связанные с распределением примесей в расплаве, которые могут быть решены управлением течениями металла в тигле на этапе подготовки металла к заливке в формы. Поскольку плавление жаропрочного сплава происходит при температурах около 1500 °C в закрытой цилиндрической вакуумной камере, наиболее доступным средством для изучения основных закономерностей процесса является математическое моделирование.

При индукционной плавке металла в расплаве возникают значительные градиенты температуры, приводящие к интенсивным конвективным движениям. Необходимо учитывать взаимное влияние переменных и неоднородных магнитных полей и конвективных течений, что приводит к постановке сложной магнитно-гидродинамической задачи. Однако особенности технологического процесса таковы, что полная задача может быть разбита на несколько подзадач, включающих следующие расчеты:

пространственного распределения магнитного поля без учета движения расплава;

индукционных токов и объемного распределения источников теплоты;

конвективных течений с известным распределением внутренних источников теплоты.

Работы в области взаимодействия металлического расплава и переменного электромагнитного поля ведутся весьма широко как в черной [1], так и цветной металлургии [2], и включают как экспериментальные [3], так и теоретические работы [4 – 6]. Известны положительные эффекты влияния магнитного поля на металлургическую продукцию, например сокращение технологического цикла по времени, измельчение зерна при затвердевании, гомогенизация химического состава, выравнивание температурного поля.

В научной литературе встречаются работы, посвященные влиянию переменных магнитных полей на движение расплава в цилиндрической полости, например [4, 5]. В работе [6] рассматривался расплав в цилиндрической жидкой зоне, находящейся во вращающемся магнитном поле. Показано, что для умеренных частот вращения магнитное поле практически однородно в каждый момент времени как вне, так и внутри жидкой зоны.

В большинстве случаев, описанных в литературе, исследуются слабые и однородные по пространству магнитные поля. Изучение влияния сильных и существенно неоднородных полей на состояние расплавленного металла представляет интерес как с теоретической точки зрения, так и со стороны его технологических приложений.

Целью настоящей работы является разработка математической модели, описывающей распределение магнитного поля в электропроводящем расплаве, генерацию индукционных токов и Джоулевой теплоты.

В качестве объекта для моделирования был выбран технологический процесс индукционной плавки, реализованный в цехе точного литья ОАО «Протон – Пермские моторы», г. Пермь.

Геометрические и физические параметры задачи

Принципиальная схема теплового узла печи представлена на рис. 1. Шихта жаропрочного

Рис. 1. Эскиз теплового узла индукторной печи (правая половина вертикального сечения): 1 – никелевый расплав, 2 – тигель из смеси электрокорунда и шамота, 3 – медный индуктор, 4 – асбестовое основание, 5 – электрокорундовый стакан

никелевого сплава 1 помещается в тигель 2, спекаемый из смеси шамота и электрокорунда, находящийся внутри водоохлаждаемого медного индуктора 3, установленного на асбестовом основании 4. Заливка металла происходит через носик электрокорундового стакана 5. Индукторная печь находится внутри вакуумной камеры, а процесс электромагнитного переплава происходит в условиях технического вакуума (10^{-3} Па). Верхняя граница расплава считается свободной. Параметры технологического процесса, в том числе физические свойства никелевого расплава [7], использованные для моделирования, приведены в таблице.

Основные уравнения и допущения

Рассматривается заполненная парамагнитным ($\mu \approx 1$) проводящим расплавом вертикальная цилиндрическая область (см. рис. 1), которая находится во внешнем неоднородном переменном магнитном поле

$$\mathbf{H}^{out} = \tilde{\mathbf{H}}(\mathbf{r}) \sin \omega t.$$

Параметр	Обозначение	Значение
Геометрические параметры теплово	ого узла печи (см. рис. 1)	•
Толщина стенок тигля, мм	δ _r	10
Высота электрокорундового стакана, мм	h ₃	50-100
Высота шамотного тигля, мм	h _{iii}	200 - 300
Высота асбестового основания, мм	h _a	50 - 60
Радиус витка, мм	R _{вит}	150
Диаметр медного проводника, мм	d _{np}	35
Внутренний радиус тигля, мм	R _M	125
Высота столба расплава металла, мм	h _M	200 - 250
Физические параметры	индуктора	
Рабочий ток, А	Ι	250
Частота переменного тока, кГц	ω/2π	1-2
Число витков	N	8-12
Физические параметры нике	глевого расплава	
Теплопроводность, Вт/(м·К)	λ	100
Удельная теплоемкость, Дж/(кг·К)	С	655
Плотность, кг/м ³	ρ	7770
Удельная проводимость, МСм/м	σ	13,3
Динамическая вязкость, мПа·с	η	41,0
Коэффициент объемного расширения, К ⁻¹	β	38,5.10-6

Параметры, использованные для моделирования технологического процесса

Пространственное распределение внешнего поля будет определено ниже, но на данном этапе оно считается известным. В дальнейшем полагается, что диэлектрические стенки не влияют на магнитное поле, созданное индуктором. Характерные частоты и параметры катушки индуктора приведены в таблице.

Переменное магнитное поле генерирует в расплаве токи, которые являются объемными источниками тепла. За счет неравномерного распределения тепловых источников в жидкости возникает неравновесный (в общем случае) градиент температуры, который порождает конвективное течение в расплаве.

Система уравнений, описывающих состояние расплава, состоит из уравнений Максвелла, закона Ома и уравнений тепловой конвекции в приближении Буссинеска, в которых учтена сила Лоренца и Джоулево тепло в уравнении теплопроводности:

$$\operatorname{rot} \mathbf{E} = -\mu\mu_0 \frac{\partial \mathbf{H}}{\partial t}, \quad \operatorname{rot} \mathbf{H} = \mathbf{J}, \quad \operatorname{div} \mathbf{E} = \operatorname{div} \mathbf{H} = 0;$$
$$\mathbf{J} = \sigma \left(\mathbf{E} + \mu\mu_0 \left[\mathbf{v} \times \mathbf{H} \right] \right);$$
$$\frac{\partial \mathbf{v}}{\partial t} + \left(\mathbf{v} \nabla \right) \mathbf{v} = -\frac{1}{\rho} \nabla p + \nu \Delta \mathbf{v} + \mathbf{g} \beta T + \frac{\mu\mu_0}{\rho} \mathbf{J} \times \mathbf{H}; \quad ^{(1)}$$

$$\frac{\partial T}{\partial t} + \mathbf{v}\nabla T = a\nabla^2 T + \frac{\mathbf{J}^2}{\rho c\sigma}, \quad \text{div}\mathbf{v} = 0,$$

где **H** – напряженность магнитного поля, t – время, μ – магнитная проницаемость, μ_0 – магнитная постоянная, σ – удельная электрическая проводимость, **v** – скорость, T – температура, a – коэффициент температуропроводности, **J** – плотность электрического тока, ρ – плотность, c – удельная теплоемкость, p – давление, v –кинематическая вязкость, **g** – ускорение свободного падения, β – коэффициент объемного расширения. Проанализируем взаимное влияние магнитного поля и конвективных течений в расплаве на основе оценок некоторых слагаемых в системе уравнений (1). Следуя [8], оценим глубину проникновения магнитного поля в расплав. Пусть имеется неподвижный расплав во внешнем поле. Комбинируя первые два уравнения системы (1), получим одно уравнение:

$$\frac{\partial \mathbf{H}}{\partial t} = \frac{1}{\mu\mu_0\sigma} \nabla^2 \mathbf{H}.$$
 (2)

Оценивая порядок левой и правой частей уравнения (2), для характерной глубины проникновения магнитного поля в расплав получаем значение $\delta \approx \sqrt{1/\sigma\mu_0\omega} \approx 3 \cdot 10^{-3}$ м. Для оценки здесь и далее использованы данные, приведенные в таблице. Глубина проникновения магнитного поля в расплав значительно меньше размеров тигля. Это говорит о том, что влияние магнитного поля на движение в расплаве будет существенно только в пределах гартмановских пограничных слоев, примыкающих к границам полости [9].

Для оценки влияния конвекции на распределение магнитного поля и электрических токов возьмем ротор от обеих частей равенства, выражающего закон Ома, и используем теорему о циркуляции электрического поля (1):

$$\operatorname{rot} \mathbf{J} = - \, \sigma \mu \mu_0 \, \frac{\partial \mathbf{H}}{\partial t} + \operatorname{rot} \big(\, \mathbf{v} \times \mu \mu_0 \mathbf{H} \big).$$

При выполнении неравенства $\omega \gg v R^{-1}$ вторым слагаемым в правой части данного равенства, а значит и влиянием конвективного движения на распределение токов, можно пренебречь.

Исходя из того, что в уравнении Навье – Стокса конвективное слагаемое $(\mathbf{v}\nabla)\mathbf{v}$ и слагаемое с подъемной силой $\mathbf{g}\beta\Delta T$ имеют один порядок, для характерного значения скорости получим оценку $v \sim \sqrt{g\beta R\theta}$, где характерная разность температур $\theta = 20$ К, а течение считалось установившимся. В этом случае получаем

$$vR^{-1} = R^{-1}\sqrt{g\beta R\theta} = 0,4 \text{ c}^{-1}.$$

Значение частоты колебаний тока в индукторе изменяется в пределах 1 — 2 кГц и значительно превосходит критические, при которых генерируемые конвективным движением расплава электрические токи влияют на распределение магнитного поля внутри расплава.

Таким образом, сопряженная магнитногидродинамическая задача может рассматриваться последовательным решением следующих подзадач:

расчет пространственного распределения магнитного поля индуктора в объеме расплава без учета его движения;

расчет индукционных токов *J* и объемной мощности источников Джоулевой теплоты;

решение задачи тепломассопереноса с известным распределением магнитного поля и внутренних источников теплоты.

Распределение магнитного поля и внутренних источников тепла

Решение уравнения диффузии магнитного поля в металле (2) будем искать в виде суперпозиции составляющих магнитного поля: внешней гармонической \mathbf{H}^{out} , создаваемой индуктором, и внутренней \mathbf{H}^{ind} , создаваемой индукционными токами:

$$\mathbf{H} = \mathbf{H}^{out} \cos \omega t + \mathbf{H}^{ind} \,. \tag{3}$$

Внутри рассматриваемой области rot $\mathbf{H}^{out} = 0$.

Выберем в качестве характерных масштабов следующие величины: для координаты — внутренний радиус тигля $R_{\rm M}$, для времени — обратную частоту пульсаций магнитного поля в индукторе ω^{-1} , для магнитного поля — H_0 , равную

$$H_0 = NI/4\pi R_{\rm M} \approx 10^3 \, A \cdot {\rm M}^{-1}$$

Учитывая выражение (3), запишем безразмерное уравнение для индукционной составляющей магнитного поля:

$$\frac{\partial \mathbf{H}^{ind}}{\partial \tau} = \frac{1}{\mathrm{Re}_m} \nabla^2 \mathbf{H}^{ind} + \mathbf{H}^{out} \sin \tau, \qquad (4)$$

где $\operatorname{Re}_m = \mu_0 \sigma R_M^2 \omega$ — магнитное число Рейнольдса.

Подстановка физических констант и характерных величин технологического процесса (см. таблицу) дает значение для $\text{Re}_m \sim 10^3$.

Уравнение (4) решалось в цилиндрической системе координат. Решение полагалось не зависящим от азимутальной координаты и сим-

метричным относительно оси *z*, что позволило свести задачу к двумерному варианту и проводить расчеты в половине вертикального сечения цилиндра. За пределами расплава индукционным полем пренебрегаем в силу малости по сравнению с внешним, а на оси симметрии отсутствует нормальная компонента плотности тока:

$$\begin{cases} \mathbf{H}^{ind} = 0 \quad \text{при} \quad r = 1, \ z = 0, \ z = h; \\ \mathbf{J} = rot \mathbf{H}^{ind} = 0 \quad \text{при} \quad r = 0. \end{cases}$$
(5)

Внешнее магнитное поле создается индуктором, который представляет собой короткую катушку. Стенка тигля не проводит электрического тока и при температуре расплава диамагнитна, следовательно, на основании теоремы о циркуляции магнитного поля, не влияет на напряженность магнитного поля индуктора **H**^{out}.

Аксиальная и радиальная компоненты напряженности магнитного поля индуктора в безразмерной форме, рассчитанные на основании закона Био – Савара – Лапласа, имеют вид

$$H_{z} = \sum_{k=1}^{N} \int_{0}^{2\pi} \frac{R(R - r_{k} \cos \varphi)}{\left[R^{2} + r_{k}^{2} + z_{k}^{2} - 2Rr_{k} \cos \varphi\right]^{\frac{3}{2}}} \cdot d\varphi;$$
(6)

$$H_{r} = \sum_{k=1}^{N} \int_{0}^{2\pi} \frac{Rz_{k} \cos \varphi}{\left[R^{2} + r_{k}^{2} + z_{k}^{2} - 2Rr_{k} \cos \varphi\right]^{\frac{3}{2}}} \cdot d\varphi,$$

где $R = 1 + \delta_{\rm T} / R_{\rm M}$ — безразмерный радиус витка индуктора; r_k, z_k — компоненты радиус-вектора от элемента тока *k*-го кольца индуктора к точке наблюдения; φ — азимутальный угол цилиндрических координат. Схема для расчета по формулам (6) приведена на рис. 2.

Алгоритм решения задачи (4) – (6) реализован в виде пакета программ, написанных на языке Фортран. При апроксимации уравнения (4) использовалась явная конечно-разностная схема. Квазистационарное решение считалось установившимся, если относительная погрешность в определении амплитуды \mathbf{H}^{ind} не превышала $\varepsilon = 10^{-5}$.

Результаты вычислительных экспериментов

На рис. 3 показаны распределение магнитного поля соленоида \mathbf{H}^{iut} , результирующее поле в расплаве при $\operatorname{Re}_m = 1000$, азимутальная со-

Рис. 2. Схема к определению магнитного поля кольца в точке с координатами (*r_k*, *z_k*, 0)

ставляющая плотности индукционных токов и мощность Джоулевых источников теплоты $q_V = J^2$. Для перехода к размерным величинам J и q_V необходимо их умножить на размерные коэффициенты:

$$J_0 = \frac{H_0}{R_0} \sim 10^4 \frac{A}{M^2}; \ q_0 = \frac{H_0^2}{\sigma R_0^2} \sim 500 \frac{BT}{M^3}.$$

Для установления закономерностей генерации теплоты проведены вычислительные эксперименты с различными магнитными числами Рейнольдса Re_m, результаты которых приведены на рис. 4.

Из рис. 3, ϵ и 4, a, δ видно, что магнитное поле присутствует только в приграничной области, а в центральной части полностью гасится индукционным полем, что хорошо согласуется с оценками, приведенными выше. В области, где градиенты магнитного поля велики, возникают электрические токи, причем на торцевых гранях и на боковой поверхности области токи противонаправлены (рис. 3, ∂ и 4, θ , ϵ). Следует отметить, что токи на боковой поверхности значительно превышают таковые на торцах (см. рис. 4, θ , ϵ). Области интенсивного выделения теплоты локализованы около боковой поверхности, тепловыделение на торцевых гранях значительно слабее (рис. 4, ∂ , ϵ).

Установлено, что с ростом магнитного числа Рейнольдса магнитное поле проникает в проводник на меньшую глубину, индукционные токи и тепловыделение возрастают и локализуются ближе к поверхности области.

Рис. 3. Вычисленные распределения основных величин по расплаву в цилиндрической полости: вектора $\mathbf{H}^{out}(a)$, его радиальной $(H_r^{out})(\delta)$ и аксиальной $(H_z^{out})(e)$ компонент; результирующего магнитного поля H(z); плотности токов $J(\partial)$ и мощности q_V внутренних источников тепла (e)

Рис. 4. Зависимости аксиальной компоненты результирующего магнитного поля (*a*, *b*), плотности тока (*b*, *c*) и объемной мощности источников тепла (*d*, *e*) от радиуса (*a*, *b*, *d*) и высоты (*b*, *c*, *e*) расплава в цилиндрической полости для различных значений числа Рейнольдса Re_m: 10² (*I*), 10³ (*2*), 10⁴ (*3*) На вставках представлены зависимости для всей области (Re_m = 10³), на основных графиках – только для приграничных областей (но подробно)

Таким образом, разработана математическая модель, описывающая магнитное поле в электропроводящем цилиндре, который помещен во внешнее неоднородное переменное магнитное поле индуктора. Модель позволяет рассчитывать распределение индукционных токов и генерацию Джоулевой теплоты.

Методами вычислительного эксперимента получены распределения напряженности магнитного поля, индукционных токов и объемной плотности источников теплоты в металлическом расплаве, находящемся в цилиндрической полости. На основе результатов вычислительных экспериментов выявлены закономерности в изменениях указанных выше величин при варьировании управляющего параметра — магнитного числа Рейнольдса. Эта информация в перспективе позволит моделировать конвективные течения в расплаве и выявить эффекты, важные для понимания процессов, влияющих на распределения примесей.

СПИСОК ЛИТЕРАТУРЫ

1. Цаплин, А.И. Теплофизика внешних воздействий при кристаллизации стальных слитков на машинах непрерывного литья [Текст] / А.И. Цаплин. – Екатеринбург: Изд-во УрО РАН, 1995. – 238 с.

2. Шейден, О. Разработки в области электромагнитного перемешивания (ЭМП) расплава в печах для плавки алюминия [Текст] / О. Шейден, А. Леман // Цветные металлы Сибири. Сб. научн. статей. – Красноярск: ООО «Версо», 2009. – С. 648 – 656.

3. **Хрипченко, С.Ю.** Кристаллизация цилиндрических алюминиевых слитков при МГД-перемешивании [Текст]/ С.Ю. Хрипченко, В.М. Долгих, С.А. Денисов [и др.] // Рос. конф. по магнитной гидродинамике. Тез. докл. Пермь, 18 – 22 июня 2012 г. – Пермь: ИМСС УрО РАН, 2012. – С. 101.

4. **Lyubimova, T.P.** Numerical investigation of dynamic magnetic field influence on vertical Bridgman crystal growth [Text] / T.P. Lyubimova, P. Dold, A. Croell [et al.]// Proc. of Int. Conf. 'Advanced Problems in Thermal Convection'. – Perm, 2004. – P. 343 – 349.

5. Любимова, Т.П. Численное исследование влия-

ния бегущего магнитного поля на тепломассоперенос в жидкой зоне [Текст] / Т.П. Любимова, И.С. Файзрахманова // Гидродинамика: Сб. науч. трудов. Вып. 11. – Пермь: Изд.-во Перм. ун.-та, 2004. – С. 173 – 190.

6. Демин, В.А. Влияние вращающегося магнитного поля на расплав в цилиндрической жидкой зоне [Текст] / В.А. Демин, Д.В. Макаров // Вестник Пермского университета. Вып. 1. Физика. – Пермь, 2004. – С. 106 – 111.

7. Дрица, М.Е. Свойства элементов [Текст]: Справ. изд. в 2-х кн. Кн. 1. Под ред. М.Е. Дрицы; 2-е изд., перераб. и доп. – М.: Металлургия, ГУП «Журнал "Цветные металлы"», 1997. – 432 с.

9. Ландау, Л.Д. Электродинамика сплошных сред [Текст] / Л.Д. Ландау, И.М. Лившиц. – М.: Наука, 1982. – 620 с.

10. **Lyubimov, D.V.** Stability of convection in a horizontal channel subjected to a longitudinal temperature gradient. Part 2. Effect of a magnetic field [Text] / D.V. Lyubimov, T.P. Lyubimova, A.V. Perminov [et al.] // J. Fluid Mech.-2009.-Vol. 635.- P. 297 - 319.

НИКУЛИН Илларион Леонидович — кандидат технических наук, доцент кафедры общей физики Пермского национального исследовательского политехнического университета.

614990, г. Пермь, Комсомольский пр., 29 nikulin.illarion@mail.ru

ПЕРМИНОВ Анатолий Викторович — кандидат физико-математических наук, доцент кафедры общей физики Пермского национального исследовательского политехнического университета. 614990, г. Пермь, Комсомольский пр., 29

perminov1973@mail.ru

© Санкт-Петербургский государственный политехнический университет, 2013