Formation of quantum vortices upon atom ionization by a pulse of electromagnetic waves

Theoretical physics
Authors:
Abstract:

A numerical and analytical study of the space-time evolution of a quantum system formed as a result of the interaction of an electromagnetic pulse with a hydrogen-like atom in the two-dimensional approximation has been carried out. A characteristic feature of the obtained solution is the presence of singular points, the analysis of them was carried out through a probability density and a probability flux density. The vortices formed during the ionization can propagate to macroscopic distances and manifest themselves as forbidden domains in the spectrum of wave numbers. For numerical simulation of such a problem, a special transformation of variables (method of expanding space) was used. The numerical analysis of the quantum vortices number and its position was performed depending on electromagnetic field parameters. The numerical solution was compared with the analytical one obtained in the framework of the Born approximation.

Citation: S.Yu. Ovchinnikov, N.V. Larionov, A.A. Smirnovsky, A.A. Schmidt, Formation of quantum vortices upon atom ionization by a pulse of electromagnetic waves, St. Petersburg Polytechnical State University Journal. Physics and Mathematics. 10 (4) (2017) 111–123. DOI: 10.18721/JPM.10409